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ABSTRACT We demonstrate the utility of locally weighted polynomial regression, a
nonparametric technique for surface estimation discussed in Lall et al. (1995), for the
spatial estimation of precipitation surface, with data related to the Chernobyl nuclear
power plant accident. The method uses multivariate, locally weighted polynomial
regression with temperature or precipitation as the dependent variable and a feature
vector (location, elevation and other attributes) of explanatory variables. Localization
of the regression is achieved by using k nearest neighbors of the point of estimate and
a monotonic distance based weight function. Generalized cross validation is used to
pick the order of the polynomial fits, as well as the number of neighbors to use.
Pointwise estimates of predictive risk are also obtained. 
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1. Introduction 
There has been renewed interest recently in developing gridded estimates of precipitation
and temperature fields to provide inputs to spatially distributed hydrologic, ecologic and
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many other management models, and to permit a useful comparison with the output of
numerical models of atmospheric circulation. Such estimates are especially difficult to
obtain in mountainous environments where there can be large changes in these fields, were
data are sparse and are usually restricted to lower elevations. 
        Many are familiar with linear regression and its use for developing a relationship
between two or more variables. The general linear model (where the variables are presumed
to be linearly related after applying some predetermined transform) is used as a building
block for spatial surface estimation. In the generalized linear regression framework, kriging
(Cressie, 1991) is a widely used technique for such estimation problems. Kriging is a linear
estimator that interpolates the data using weights based on distance and an inferred
parametrically specified spatial correlation structure (also known as the variogram). An
advantage of using kriging is that it can provide an estimate of the pointwise mean square
error of estimate as a byproduct. Cressie (1991) argues that kriging provides an efficient
estimator when the sampling locations are clustered and the residuals of the fit are
uncorrelated. This may be true if the correct parametric form for the "trend" function and
the "variogram" is specified. Usually, these are not known and are hard to specify properly
given a single realization. 
        Yakowitz and Szidarovsky (1985), and Owosina (1992) compare the properties and
performance of kriging to some nonparametric regression estimators and find the
nonparametric estimators to perform better than kriging. Satagopan and Rajagopalan (1993)
compare kriging with smoothing splines and local polynomial estimators (Cleveland, 1979)
for estimation of precipitation surface over a region in the Willamette River basin in the
state of Washington and find the nonparametric methods to be better than kriging. Lall et
al. (1995) developed a nonparametric local polynomial functional estimation technique that
is conceptually simple and computationally fast. 
        The local polynomial estimation scheme is first briefly described. The algorithm is
then presented, followed by the application to Chernobyl data. Discussion of the results
concludes the paper. 

2. Local Polynomial Estimation Technique 

Local polynomial estimators for function estimation are one of the many nonparametric
estimators that are in practice. Nonparametric or local fitting estimators, with weaker
assumptions than the parametric estimators (e.g. kriging), adapt better to heterogeneous and
non-stationary data sets. Some attributes of these estimators are:
(1) The estimator can often be expressed as a weighted moving average of the observations.
(2) The estimates are defined locally or using data from a small neighborhood of each point
of estimate. Consequently, they can approximate a wide class of target, underlying
functions.
(3) The nonparametric estimator has parameters that control the local weights and the size
of the neighborhood used for estimation. 
        Some monographs that make this literature accessible are by Silverman (1986),
Eubank (1988), Härdle (1989). Owosina (1992) also has a fairly detailed description of
various nonparametric function estimation schemes. 
  
2.1 Local Polynomial Scheme
The description of the technique is kept short and for details the reader is referred to Lall et
al. (1995). Consider a general regression model given as : 
yi = f(xi) + ei,  i = 1,...,n                                                               (1) 
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where  x is a vector of M explanatory variables, y is the "response" variable, f(.) represents
the underlying functional relationship between y and x, ei are noise or measurement errors,
that may or may not depend on xi, and n is the number of observations.
        An approach for the pointwise estimation of the unknown function f(.) from data,
based on a local Taylor series expansion of  f(x) at the point of estimate x, was proposed by
Macauley (1931). Cleveland (1979), Cleveland and Devlin (1988) and Cleveland et
al.(1988) pioneered this idea into a statistical methodology for local approximation of
functions from data. Recently (e.g., Hastie and Loader (1993), Fan and Gijbels (1992),
Müller(1987)), these methods have been recognized as very useful generalizations of kernel
regression (weighted moving averages). Applications to a suite of statistical estimation
problems are emerging. The reader is referred to a recent monograph by Wand and Jones
(1995) for general background on the methods. 
        Generally, the strategy is to choose a certain number, k, of nearest neighbors (in terms
of Euclidean distance) of the estimation point x, and to form the estimate (x) through a
locally weighted, polynomial regression over the (x, y) data that lie in the neighborhood.
Consider the general regression model described in (1). The sampling locations xi are
usually not regularly spaced. We assume the ei are uncorrelated, mean zero, random
variables, assumed to be approximately identically distributed in the k nearest
neighborhood of the point of estimate. Then, the locally weighted polynomial regression at
each point of estimate xl*, l =1,�,np, given a (n by M) data matrix x and a (n by 1)
response vector y, is obtained through the solution of the weighted least squares problem: 
Min (yl - Zl βl)T Wl(yl- Zl βl)                                                                                 (2) 
where the subscript l recognizes that the associated element is connected with the point of
estimate xl*; βlare estimates of the coefficients of the terms in the basis defined by Zl; Zl is
a matrix formed by augmenting x, with columns that represent the polynomial expansion of
x to degree p ( including cross product terms if desired); Wl is a k by k diagonal weight
matrix with elements 

where ui,l = di,l/dk,l; di,l is the distance from xl* to xi using an appropriate metric, and K(.) is
a weight function. We have implemented a bisquare kernel (K(u)=15/16(1-u2)2). The latter
is recommended by Scott (1992) because of its smoothness properties. The matrix Zl and
vector yl are defined over the k nearest neighborhood of xl*. Singular Value Decomposition
(SVD) using algorithms from Press (1989) is used to solve the linear estimation problem
resulting from (2). 

        The reader may note that we are in the familiar territory of linear regression, and will
hence have the usual statistical tools available to us. The coefficients βl are obtained as: 
βl = (Ζl

TWl Zl) -1Wl yl                                                                              (3) 
The resulting estimate of ( xl*) is then: 

( xl*) = zl βl                                                                                                  (4) 
where zl  is the d by 1 vector formed by augmenting xl with polynomial terms to order p,
and retaining the terms for which βj are found to be significantly different from 0.
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2.2 Parameter selection k & p 
A variety of estimators of Predictive Mean Square Error of   have been proposed in the
literature. Cleveland and Devlin (1988) considered Mallows Cp in their work on local
polynomial regression.Li(1985) discusses the theoretical foundations of this and other
measures such as Ordinary and Generalized Cross Validation, the Finite Prediction Error,
the AIC and the BIC. Of these the Generalized Cross Validation (GCV) statistic proposed
by Craven and Wahba (1979) is of particular interest since it has performed well (Härdle
1984, 1989) in practical applications. It is defined as : 
GCV( ) = MSE( ) / (n

–1
tr[I-H])

2
                                                                     (5) 

where the Mean Square Error MSE 

( ) = n–1 (yi - (xi))2                                                        (6) 
H is the influence matrix defined through 

= Hy                                                                       (7) 
I is the identity matrix, and tr[.] represents the trace of the matrix.
        Note that (7) represents a linear estimator, and the ith diagonal element of H can be
thought of as the "weight" of that data point on the estimate at that point. Eubank (1988, p.
406) states that for linear regression (local or global, and on the raw variable or a
polynomial in it) it is easy to show that 0  hii 1. Thus if hii is 1, and the other hij are 0, we
see that we have 0 degrees of freedom, and the estimate at each point is simply the original
data, i.e. the model completely overfits or undersmooths. The corresponding MSE is zero,
and the GCV is infinity. On the other hand, if all the hij are equal, the estimate at every
point is the sample average of the yi. The degrees of freedom are (n-1), since we fit one
parameter, and the MSE may be large if  f(.)is not a constant. For the situation were n is
large, MSE and GCV will approach each other in magnitude. Consider also the case where
the hij are equal for the k nearest neighbors of a point and 0 elsewhere. In this case we may
approximate f(.) better since we form a moving average of y values, and hence have a lower
MSE. However, the degrees of freedom will only be (k -1), and the GCV may be larger.
The denominator in equation (5) consequently has the role of a penalty for the effective
number of parameters used in fitting the model. The effective number of parameters is
determined by the number of neighbors and the number of terms in the local polynomial.
        The motivation for using GCV( ) comes from a theorem proved by Craven and
Wahba (1979). They showed that GCV( ) is a nearly unbiased estimator of the predictive
risk, as long as the degrees of freedom are sufficiently large.
        We shall consider  the whole data set  for parameter selection. The global GCV
(GGCV) can be estimated after performing n local regressions at each data point xi (i =
1,..,n), as: 

GGCV( ) = ( ei
2 / n) / (1 - hii / n)2                     (8)

where hii is estimated from equation (7), and where ei = yi - (xi)
        One can select appropriate values of k and p, as the minimizers of the GGCV value
computed in equation (8) for each combination of k and p. These would be the values of k
and p that would do well on the average. However, in certain situations (e.g., where the
curvature of the target function varies over the data, and where the variance of the noise
varies over the range of the data), one may wish to make such choices locally at the point of
estimate.
        Lall et al. (1995) introduced the use of a local GCV score that uses data directly from
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the local regression at the point of estimate. In this case the errors ei,l are the residues of the
model fitted over the k nearest neighbors of the point xl*, and Wl is the corresponding
weight matrix. The trace of the matrix H in this case is simply d, the number of coefficients
fitted. The local GCV (LGCV) score is then given as: 

LGCVl( ) = (el
TWlel) / ((k – d)/k)2 (9)

The appropriate values of k and p can then be obtained as the ones that minimize the local
GCV score for the local regression. The LGCVl value also provides insight into the local
predictive error variance. 

3. Application 
We applied the technique described above to the precipitation data of 100 sample points.
We searched for the k between 8 to 100 in steps of 2 and p in 1 to 2 on GGCV criteria. The
optimal choice of k came out to be k = 32 and p = 2. We then estimated the precipitation at
the 367 locations. The auto correlation function (ACF) of the residuals is shown in Figure
1(a). The residuals are not correlated significantly. The histogram of the residuals in Figure
1(b) shows they are normally distributed. These are two main assumptions (i.e., normality
of the residuals and independence) in the regression context, and they both seem to be
satisfied  well. Plot of estimated versus the observed values is shown in Figure 1(c). It can
be seen that the scatter falls pretty much around a straight line. The correlation between the
observed and estimated values is 0.8, indicative of a very good fit. In Figure 1(d) we show
the plots of k vs GGCV for p = 1 and 2 to show the nature of the GGCV function for this
data set. 

Figure 1(a): ACF of errors; (b) Histogram of errors; (c): Scatter plot of Observed vs Estimated values. The
solid line is the best fit between them; (d): GGCV vs k plot for p = 1 and p = 2.
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        Some general statistics of the observed and estimates are presented in Table 1. The
measures of central tendency (mean and median) are very well reproduced by the estimates.
However, the variance in the estimates is very low and consequently the maximum
observations are not well estimated. Also notice that the mean of the estimates of the
highest ten values is low and variance high. 

 Table 1 Statistics of observed and estimates
Statistic Observed /Estimate
Minimum 0.  0.
Maximum 517 501
Mean 185 181
Median 162 152
Variance 12358 11975
Mean of ten highest values 456 333*

Var. of ten highest values 1193 6400*

RMSE  67 85
Bias in errors 14 78
Absolute Mean errors  45

*Obtained from the estimates of the same locations of the observed ten highest values

Figure 2(a): Image of observed values; (b) Image of estimates; (c) Image of errors;  (d) Image of LGCV
estimates

        
The images of observed values and those of the estimated values are shown in

Figure 2(a) and (b) respectively. The gross features are very well reproduced. The areas
with very high precipitation tend to be smoothed out in the estimates. This is
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understandable - the method constructs the estimate from a small neighborhood and in
regions of high precipitation (typically at higher elevations) the neighborhood includes low
precipitation (typically at lower elevations) regions as well, this leads to a significant
smoothing and hence reduced precipitation at locations of high precipitation. This can be
easily rectified by including elevation as the third independent variable if data exists.
        The image of the errors (Figure 2c) also shows that the errors are high in regions of
high precipitation. We also compute LGCV (Equation 9), a measure of local error of the
estimate. It is shown in Figure 2(d). The higher the LGCV values  the higher the estimation
error and this too indicates that the LGCV is high in  regions of high precipitation. This
may suggest the use of a log transform prior to regression. However, given that many
values of precipitation are zero, we chose not to do this for the current application. 
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