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ABSTRACT

A Bayesian methodology is used to assess the information content of categorical, probabilistic forecasts of
specific variables derived from a general circulation model (GCM) forecast ensemble, and to combine a ‘‘prior’’
forecast (climatological probabilities of each category) with a categorical probabilistic forecast derived from a
GCM ensemble to develop posterior, or ‘‘regularized’’ categorical probabilities. The combination algorithm
assigns a weight to a particular model forecast and to climatology. The ratio of the sample likelihood of the
model based on the posterior categorical probabilities, to that based on climatological probabilities, computed
over the period of record of historical forecasts, provides a measure of the skill or information content of a
candidate model. The weight given to a GCM forecast serves as a secondary indicator of its information content.
Model weights are determined by maximizing the likelihood ratio. Results using the so-called ranked probability
skill score as an objective function are also obtained, and are found to be very similar to the likelihood-based
results.

The procedure is extended to the optimal combination of forecasts from multiple GCMs. An application of
the method is presented for global, seasonal precipitation and temperature forecasts in two different seasons,
based on 41 yr of observational and model simulation data. The multimodel combination skill is significantly
better than climatology skill in only a few regions of the globe, but is generally an improvement over individual
models, and over a simple average of forecasts from different models. Limitations and possible improvements
of the methodology are discussed.

1. Introduction

The recent demonstration of skill in forecasting
ENSO and its climatic teleconnections (Cane et al. 1986;
Barnston et al. 1999a,b; Mason et al. 1999) has led to
considerable interest in the use of climate forecasting
models. The models in question are general circulation
models that numerically integrate the governing equa-
tions of motion using prescribed boundary and initial
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conditions. Different models generally embody the same
governing equations but vary in their parameterization
of subgrid-scale processes such as clouds or convection
and in their treatment of boundary conditions and data
assimilation. These models generate forecasts of a large
number O(107) of state variables on a spatial grid over
the planet. The model outputs may be used in turn as
boundary conditions by land-surface hydrologic, eco-
logic, and other models to provide forecasts of ‘‘local’’
state variables relevant to these systems. Uncertainties
in the boundary and initial conditions, as well as biases
in process parameterizations propagate through this pro-
cess. Further, nonlinear interactions introduce chaotic
behavior and loss of predictability with increasing fore-
cast lead times. To deal with this limitation, forecasts
are commonly provided as ensembles (typically 5–10
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members), generated through small perturbations of the
initial and boundary conditions. Often forecast ensem-
bles can differ significantly across models, and from the
observed climate state. Consequently, there is interest
in developing methods for combining such ensembles
in a way that makes the resulting ensemble more rep-
resentative of the observed data.

A priori, we expect model estimates of the evolution
of surface state variables to be biased relative to ob-
servations. This is due in part to limitations in process
and boundary condition representation, and in part to
the disparity in the nature of model outputs and surface
observations. The model space and time discretization
does not correspond to the sampling domain for surface
observations. Thus, regardless of whether one interprets
the model variables as point values or grid averages,
even under perfect physics, we cannot expect model
outputs to correspond exactly to fields interpolated from
surface observations, particularly where there is con-
siderable subgrid heterogeneity. These biases may be
manifest in the marginal (i.e., long term) distribution of
the state variable, in the conditional (e.g., forecast of
next season) distribution, or in both.

In this paper a framework is developed under which
a categorical, probabilistic forecast can be derived from
a GCM ensemble, allowing for an empirical correction
of the bias (GCM vs observations) in the marginal dis-
tribution of the state variable at the location of interest.
A Bayesian approach for the evaluation of forecast skill
and regularization of categorical probability forecasts is
developed and applied. It is presumed that a reasonably
long (e.g., 30–40 yr) sequence of past model forecasts
and corresponding historical data is available. This se-
ries is used for skill assessment and model regulariza-
tion. The procedure allows one to assess the relative
probability with which one model (e.g., a raw GCM
forecast) is likely to generate the correct category of
outcome when compared with another model (e.g., cli-
matology, another GCM, or a statistical forecast). We
can also develop probabilistic categorical forecasts that
reflect the model skill—automatically tending to cli-
matology where skill is low, and to raw model forecast
where skill is high. A by-product of the procedure is an
estimate of the uncertainty distribution of the category
probabilities for a given forecast. These may be useful
for Monte Carlo analysis of decisions that use the fore-
cast as input. The framework presented is extended to
the simultaneous use and combination of multiple fore-
cast models. Results for precipitation and temperature
forecasts over the entire globe are presented.

2. Background

Two classes of methods have been used for multi-
model ensemble forecast combination. A simple way to
combine the ensembles from different models is to pool
ensembles for all models into a single ensemble (e.g.,
Palmer et al. 2000). Another approach uses best linear

unbiased estimates (Fraedrich and Smith 1989; Pavan
and Doblas-Reyes 2000) or linear regression (Krish-
namurti et al. 1999, 2000). A method akin to linear
regression has been used operationally for some time at
the National Centers for Environmental Prediction
(NCEP) to combine individual forecasts of seasonal cli-
mate (A. Barnston 2001, personal communication). Sev-
eral papers under the Prediction of Climate Variations
on Seasonal Timescales (PROVOST) project used mul-
timodel ensembles (using four different European cli-
mate models) for forecasts of several variables across
the globe and reported improvements over models using
a single ensemble [we refer the readers to the DSP/
PROVOST issue, vol. 126(567) of the Quarterly Jour-
nal of Royal Meteorological Society]. The increased ef-
fective sample size of the ensemble by pooling infor-
mation from different models presumably offers a re-
duction in the variance of the statistics (e.g., mean) of
the forecast. However, given the likely differing linear
and nonlinear biases in each model, it is not clear that
such a strategy will always be effective. Root-mean-
square error or the ranked probability skill score (Ep-
stein 1969; Wilks 1995) have been used as the measures
of performance. The bias and variance components of
the root-mean-square error are typically not identified
separately. It is not clear whether the improved skill
from the regression approaches is superior to the vari-
ance reduction that would be obtained by simply av-
eraging across the individual models, and whether the
improvement is a result largely of the bias correction
for each model.

Quasi-objective methods for combining model en-
sembles have been developed (Mason et al. 1999) and
used previously in the seasonal forecasts issued by the
International Research Institute (IRI) for Climate Pre-
diction. The state space of the variable of interest is
divided into three categories or ‘‘terciles’’ using the his-
torical station/regional data. Forecasts are then issued
as probabilities of outcomes for each of three terciles
for the variable. The method combines the ensemble
forecasts from the models based on past performance
of individual models, prior knowledge from empirical
studies, and other information. The actual combination
itself is done in a subjective manner. The belief is that
probabilistic forecasts may be more useful for appli-
cations than the forecast of the conditional mean (as
obtained by a regression approach), and that the amount
of information available can perhaps justify only a three-
category forecast.

The combination method developed here provides a
fully objective counterpart to the previous probabilistic
forecast methods at IRI and elsewhere. In principle, it
allows for more extensive retrospective evaluations, and
more flexibility for changes in models, ensemble sizes,
and other parameters. These were primary motivations
for the work. Through the analysis of individual model
skills relative to combined model skill, we are able to
identify the contribution of multimodel combination,
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over and above straightforward bias correction, in im-
proving forecast performance.

3. Approach

a. Preliminaries

Consider as a starting point the examination of a sin-
gle state variable at a single location, with the following
information available:

1) A historical time series of the state variable, xt, t 5
1, . . . , n; where n is the length of record. In the
present context of seasonal forecasts, n can be taken
to be the number of years of record.

2) For each GCM, there is a corresponding ensemble
time series of forecasts, denoted yjt, t 5 1, . . . , n,
j 5 1, . . . , m; where m is the number of ensemble
members.

3) The user intends to classify the data into K cate-
gories. The categories may or may not be equally
spaced. A familiar example is the tercile (K 5 3,
and the categories are derived from breakpoints, such
that the marginal probability associated with each
category is 1/3). One could also consider K 5 n 1
1, and use the ranked observations as breakpoints
for the categories. This is equivalent to a statement
about the empirical cumulative distribution function
of x, since each ranked observation demarcates a
specific empirical percentile of the marginal distri-
bution of x. As precision increases with increasing
K, reliability of the assertion of the probabilities in
each category decreases, for fixed n, due to sampling
variability.

First, preprocessing of the observational data and
model outputs into K categories is done by identifying
the set of K 2 1 breakpoints that represent specific
percentiles of the respective distributions, the model
counterpart derived from the aggregate of all m ensem-
ble members. For example, the (approx.) 33d and 67th
percentiles of the observation and model distributions
would be used to categorize the respective data for the
case of standard terciles. Then it is possible to consider
the sequence of observation category outcomes for each
of the n time points to be described by a discrete random
variable Xt, which assumes integer values between 1
and K. Similarly, the sequence of model category out-
comes, for each of the m ensemble members can be
described by a random variable Yt, assuming the same
range of integer values.

If the model is unbiased (and n is large enough), the
breakpoints of the two distributions will coincide. In
general, there will be some model bias, and the break-
points will therefore differ. But by dealing only with
the categorical information as defined above, this overall
bias is effectively removed. Of course, there remains
the possibility of conditional bias, which would con-
tribute significantly to degrading actual forecast per-
formance.

b. Probabilities and uncertainty

Now, consider the following candidate probabilistic
forecasts:

Climatology:

P (x) 5 P (x), k 5 1, . . . , K,kt k

t 5 1, . . . , n, (1)

GCM: P (y) 5 m /m, k 5 1, . . . , K,kt kt

t 5 1, . . . , n, (2)

where Pkt(x) is the probability of drawing a state variable
value that falls in category k, in year t, using only the
marginal distribution, Pk(x); Pkt(y) is the probability of
drawing a state variable value that falls in category k,
in year t, using only the GCM forecast ensemble; mkt

is the number of GCM ensemble members that fell in
category k in year t; and m is the total number of en-
semble members. Pk(x) is equal to 1/K for categories
based on equal-sized percentile ranges [e.g., for terciles,
Pk(x) 5 1/3].

If the category breakpoints are considered to be fixed
at the specified values, and the probabilities Pk(x) are
estimated from different sample realizations (each of
length n), the estimated probabilities would vary across
realizations. For example, consider tossing a six-faced
die. If the die is repeatedly tossed n (e.g., 40) times,
and the probability of each face coming up is computed,
the estimated probability of each face will be different
for each set of n tosses. Clearly as the sample size, n,
used to define the percentiles increases, the variance of
estimation decreases. Thus, one can think of the Pk(x)
as random variables, given fixed category definitions
(that were selected, of course, based on the percentiles
of the n year sample). An appropriate prior distribution
for the Pk(x) given the multinomial process Xt, is the
Dirichlet distribution D(a):

K

21 a 21kf (P) 5 D(a) 5 (B(a)) P , (3)P k
k51

where P is the vector of category probabilities, and B(a)
is a generalized beta function defined as

K

G(a )P k
k51B(a) 5 B(a , a , . . . , a ) 5 , (4)1 2 K

K

G aO k1 2k51

where G is the Gamma function, and ak is a scale pa-
rameter analogous to the number of outcomes in cate-
gory k (i.e., n/3 for terciles). The multinomial process
and associated Dirichlet distribution are straightforward
extensions of the more familiar Bernoulli process and
binomial distribution, where now rather than two (mu-
tually exclusive) outcomes and one process parameter
there are K, and K 2 1, respectively (in our application
K 5 3).
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Defining a 5 ak,the moments of this distributionKSk51

are (O’Hagan 1994, p. 279):

E[P ] 5 a /ak k

2var[P ] 5 a (a 2 a )/[a (a 1 1)]k k k

2cov[P , P ] 5 2a a /[a (a 1 1)] (5)k l k l

For the case of tercile or other equiprobable cate-
gories, it is clear that for a fixed K, the properties of
this distribution are determined solely by the parameter
a, the sample size used for determining the probabilities,
and that the variance decreases as a increases.

The above presentation is also relevant for the GCM
forecast-derived probabilities Pkt(y), but in this case
based on a sample of size m. Thus, Eqs. (3) though (5)
can be considered applicable for both situations, with
the proper interpretation of the parameters ak and a.

c. Forecast skill and regularization

Here, the first objective is to evaluate whether the
ensemble forecast from a particular GCM has skill. This
problem may be considered in the following manner.
For each year there is a prior probability distribution
for the Pkt(x), defined through Eqs. (3) and (4), and the
assertion that ak 5 nPk. This corresponds to the cli-
matology forecast and its associated uncertainty. For the
same process, a GCM ensemble forecast is presented
for each year, expressed as Pkt(y). The uncertainty in
this forecast each year could be described using Eqs.
(3) through (5), and the parameters mkt, and m, corre-
sponding to the ak and a. Next, consider how the two
sources of information might be merged objectively, and
how the process can provide a measure of model fore-
cast skill. It is useful to consider the various possibilities
as follows.

Suppose a prior belief is that the GCM really draws
from the marginal distribution of the data, and has no
conditional or forecast information. In this case, the
GCM ensemble in a given year simply provides addi-
tional versions of possible state variable values that can
be used to improve prior (climatological) estimates of
the category probabilities, but does not provide specific
utility for a seasonal forecast. Jointly using the GCM
ensemble and the climatological forecast then could in-
crease the effective sample size a, and thus improve the
precision of the estimates of the category probabilities.
If under this noninformative GCM scenario, it is con-
sidered that each year of record is equal, in information,
to one GCM ensemble member, then the optimal weight
for combining the GCM and climatology forecasts
would be proportional to the sample sizes: m/(m 1 n)
and n/(m 1 n), respectively. These are designated as the
‘‘prior odds ratio’’ for GCM and climatology, respec-
tively.

Alternatively, suppose that the GCM has considerable
skill in conditional forecasting and its ensemble is ca-
pable of representing the underlying probabilities of

events in different categories. However, given the rel-
atively small sample size (m or a) for the ensembles,
the associated probabilities, Pkt(y), have high uncer-
tainty. Recognizing that model performance reflects a
trade-off between bias and variance, we may be willing
to pool the GCM ensemble forecast (low bias and low
variance) with the climatological forecast (high condi-
tional bias but lower variance). This scenario would lead
to a weight for climatology that is smaller than the prior
odds ratio n/(m 1 n).

Finally, suppose that the model-based forecasts are
seriously flawed, in the sense that the conditional prob-
abilities indicated by the ensembles have much higher
variance than expected for a sample of size m, but on
average they differ little from the climatological prob-
abilities (by construction if the bias in the marginal dis-
tribution of the model is removed). In this case, if the
climatology forecast and the model forecast are pooled
in some way, it would be desirable to reduce the weight
given to the model forecast, below its prior odds ratio
of m/(m 1 n), corresponding to the GCM providing a
noninformative forecast where the ensemble variance is
representative of climatology.

A method is sought to arrive at a formulation for
combining the two forecasts, and assigning appropriate
weight to each, taking into account the effect of sample
sizes for both climatology and model forecasts. This can
be done quite readily using a Bayesian approach, since
the uncertainty in both sources of information is pro-
vided by a single parameter of the Dirichlet distribution.
The reasoning proceeds as follows.

Climatology and its uncertainty provide the prior
forecast distribution. This prior belief is updated each
year with the GCM forecast probabilities and their as-
sociated uncertainty, to provide a posterior probability
distribution for the forecast. Given the use of the Dir-
ichlet distribution as a conjugate distribution for the
multinomial process, it can be shown (O’Hagan 1994,
p. 279) that the posterior distribution resulting from the
combination of the two sources of information, with
parameters a and b is also Dirichlet with parameter (a
1 b). Here, consider a weighted combination of the
climatology and the GCM ensemble forecast, where the
weight is to be determined as part of an optimization
process.

The posterior probabilistic forecast for each year can
be denoted thus

f (Q |P (y)) 5 D(c ) c 5 a 1 bt t t t t

a 5 nP (x) k 5 1, . . . , Kk k

b 5 wmP (y) k 5 1, . . . , K,kt kt

t 5 1, . . . , n, (6)

where Q t is a vector of posterior probabilities for each
of the categories for time step t; w is a weight or reg-
ularization parameter applied to the ensemble sample
size m, such that wm represents the effective sample
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size of the GCM ensemble forecast relative to the sample
size (n) of the climatology forecast.

The mean and variance of the posterior categorical
probability forecast may then be defined following Eq.
(5), as

E[Q ] 5 c /ckt kt

2var[Q ] 5 c (c 2 c )/[c (c 1 1)]kt kt kt

c 5 (a 1 b ) 5 nP (x) 1 wmP (y)kt k kt k kt

K

c 5 c 5 a 1 b a 5 nO kt
k51

b 5 wm (7)

Here, c can be thought of as the effective sample size
associated with the combined forecast. It is the weighted
sum (n 1 wm) of the sample size for climatology and
of the GCM ensemble size. Correspondingly, ckt reflects
the effective number of counts in category k for year t,
subsequent to the weighted combination of the clima-
tology and the GCM forecasts. In practice, the raw en-
semble probabilistic forecast Pkt(y), would be replaced
by the average posterior probabilities for each category,
E[Qkt], and its variance would be known from Eq. (7),
as well as an uncertainty distribution from Eq. (6). For
a tercile forecast the expected value of the posterior
probability for category k is (n/3 1 wmkt)/(n 1 wm).
Note that this is a function of both the sample size for
climatology and the size of the model ensemble, as is
desired. Since one can make either climatology or the
model ensemble dominate the estimate through the
choice of w, it is clear that the choice of w needs to
reflect the information content associated with a cli-
matology sample of size n, and a model ensemble of
size m. Changing either n or m requires a new choice
of w.

The selection of w constitutes an optimization prob-
lem, the result depending on the choice of skill measure
that is to be optimized. An appropriate choice is the
posterior likelihood function, defined over the N year
common record available of historical and model data,
at a particular grid location. This has the form

N

L(w) 5 E(Q ), (8)P k*t
t51

where k* represents the category actually observed to
occur at each time t. Thus L(w) simply reflects the prod-
uct over all times (years) of the forecast probabilities
assigned to the correct category. It represents an inte-
gration of the ‘‘performance’’ of the candidate model
over a run of events. Two different models can be com-
pared in terms of their likelihood ratio L2:L1 which rep-
resents the ratio of the probability that model 2 is ap-
propriate relative to model 1. Consider a coin-tossing
example (K 5 2). Let us say that one has a fair coin
(p(Heads) 5 p(Tails) 5 0.5). For the first example say

that one has misspecified the model and believes that
p(Heads) is 0.8. Now over a large number of coin tosses,
one expects to get roughly half heads, and the likelihood
of the model is 0.80.5n 0.20.5n, which is 1.05 3 1024 for
n 5 10; 1.61 3 10240 for n 5 100, as compared to the
null model (p 5 0.5) for the fair coin, which gives 9.77
3 1024 for n 5 10; 7.89 3 10231 for n 5 100, leading
to a likelihood ratio of 9.31 for n 5 10; 4.91 3 109 for
n 5 100 in favor of the fair coin model.

A general purpose nonlinear optimization algorithm
called Feasible Sequential Quadratic Programming
(FSQP) (Zhou and Tits 1993) was used to maximize
log(L(w)) subject to the constraint that w be positive.
Zhou and Tits (1993) show that this algorithm is glob-
ally convergent and locally superlinear convergent. A
succession of quadratic programs is solved to determine
the optimal solution formed by Taylor series approxi-
mations of the functions at each solution point (see also
Luenberger 1989).

The relative performance of two models may be com-
pared either in terms of the magnitude of the regulari-
zation parameter, w, (or equivalently the ratio wm/n), or
in terms of the ratio of their sample likelihood. The
weight measure (wm/n) is interpretable in terms of the
implied sample size associated with the forecast relative
to using a n year climatology record. If the ratio wm/n
is greater than 1, then on average the GCM ensemble
forecast has information content that exceeds what
would be provided by a n year record and the associated
climatology forecast. As this ratio decreases, the infor-
mation added by the GCM ensemble forecast decreases,
and in particular for w 5 1, the m member GCM en-
semble forecast contributes simply m noninformative (in
the sense of a conditional forecast) years to the cli-
matology forecast. Values of w less than 1 suggest that
individual ensemble forecast members contribute less
information than a year drawn at random from the cli-
matological record.

The likelihood ratio provides a measure of the relative
probability with which two competing models are likely
to represent the actual outcome in a sequence of tests
of the models. Recognizing that users may often want
to know how likely one model is to be accurate in a
single event on average, rather than averaged over an
arbitrary sample size, it is useful in this context to report
the likelihood ratio normalized for the sample size over
which it is evaluated:

1/nLiLR 5 (9)ij 1 2Lj

For the coin-tossing example presented earlier, this
translates into ratios of 1.25 in favor of the null model
for both the sample sizes (10 or 100) considered.

While one can directly compare a GCM to climatol-
ogy or to another GCM using Eq. (9), given the existing
small ensemble size, this may not be feasible. If the
model ensemble does not show any probability of a
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solution in a particular category for a given year, and
the actual outcome lies in that category, then the prob-
ability of the model being correct that year (and hence
its full sample likelihood) will be zero. This precludes
a useful comparison of two models without a further
modification of either the likelihood ratio measure, or
a prior smoothing [e.g., by kernel methods; see Raja-
gopalan and Lall (1995)] of the model ensemble prob-
abilities. On the other hand, the optimal combined fore-
cast always gives nonzero probabilities in all categories
because of the finite contribution of climatology, so one
can adopt the ratio of likelihood based on the posterior
probability distribution to that of climatology as a mea-
sure of regularized model performance. Since the de-
nominator in all such comparisons is the fixed likelihood
associated with a climatology model, the likelihood ratio
(LR) of two models is readily computed as the ratio of
their base LR values with respect to climatology.

It is often of interest to estimate the changes in ap-
parent model skill as the number of categories (K) is
varied. As noted earlier, a small K gives a coarse rep-
resentation of the underlying cumulative density func-
tion, while a large K attempts to more closely approx-
imate the underlying density. However, for a fixed sam-
ple size available for testing and validation, a larger K
may induce a much higher variability. Potentially, mod-
els formulated with different numbers of categories
could also be compared with each other in terms of their
likelihood ratio.

The selection of w through the maximization of the
posterior likelihood function using FSQP has associated
sampling variability. If the common period of record
for forecasts and historical data used for validation (N)
is small, one can expect a high degree of variability in
the selection of w across different realizations or grid
cells. For the coin toss example, one can readily visu-
alize that if N is 10, due to sampling variability in the
outcome of the coin toss, one may choose the biased
probability model (p(Heads) 5 0.8) as correct in re-
peated tests, more often (as a percentage) than if N was
100. As K increases, the number of parameters to be
estimated increases, and hence the effective degrees of
freedom of the scheme decreases, leading to increased
variability in estimating w or LR. The use of a fully
Bayesian approach based on hierarchical modeling (Gel-
man et al. 1995) that explicitly treats w as a random
variable across all grid nodes, with a specified prior
distribution, would be promising in this regard. This
approach would allow one to build spatial and/or tem-
poral structure into the choice of w. We expect to pursue
such a strategy in the future.

d. Generalization to a combination of multiple
forecast models

The procedure described above generalizes readily to
the development of a posterior probability forecast
through a combination of forecasts from J different

models (including a climatology forecast). Now the pos-
terior probability distribution can be rewritten by anal-
ogy to Eq. (6) as

J

f (Q |P (y), j 5 1 . . . J) 5 D(c ) c 5 aOt tj t t jt
j51

a 5 w m P (y)jkt j j kij

k 5 1, . . . , K,

j 5 1, . . . , J,

t 5 1, . . . , n
J

c 5 w mO j j
j51

J

w m P (y)O j j ktj
j51

E[Q ] 5 , (10)kt J

w mO j j
j51

where mj is the size of the ensemble for model j (mj 5
n for climatology), and wj is the weight ascribed to
model j.

The weights wj are selected by maximizing the pos-
terior likelihood function defined as before [Eq. (8)],
under the constraint that each wj is positive. The weights
are normalized to sum to 1 for presentation purposes
after the solution of the maximization problem. If the
ensemble size for each model is the same, the weights
directly reflect the relative information content of each
model. An information measure for the combination of
models equivalent to the w for the single model case is
provided by wj*, where j* is the index of the climatology
model. Higher values of wj* will indicate lower infor-
mation content in the models and viceversa. The pos-
terior model formed as the combination of multiple fore-
cast models can also be compared with simpler models
using the likelihood ratio defined earlier.

4. Application

The model evaluation and combination procedures
described in the previous section were applied to global
precipitation and temperature forecasts obtained from
three atmospheric general circulation models (AGCMs)
that the IRI currently uses for its real-time forecasting.
The three models are ECHAM3 (from the Max Plank
Institute), MRF9 (from NCEP), and CCM3 (from the
National Center for Atmospheric Research). Further de-
scriptions are provided in Mason et al (1999). All three
spectral models were run at a T42 (or T40) resolution
(approximately 2.88 latitude and longitude) with vertical
resolution of 18 (or 19) layers. The models were run in
a simulation mode, forced with observed sea surface
temperatures (SSTs) for the period 1950–91. An ensem-
ble of 10 runs with identical SST forcing but differing
initial conditions was available for each AGCM. Thus
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we have 10 ensemble simulations of precipitation and
temperature for each month from each model, at each
location globally.

In the results presented here the focus is on two sea-
sons, April–June (AMJ), and January–March (JFM).
These represent rainy seasons for particular regions that
will be emphasized. The results are representative of the
overall results, except that the relative performance of
individual models can differ from region to region. Ter-
cile forecasts (K 5 3) were considered, to be consistent
with the practice in the IRI net assessment forecasts.
For each season, for each variable of interest (precipi-
tation, surface temperature), at each grid location the
following was done:

1) Estimate the regularization parameter wj for model
j by maximizing the posterior likelihood function
defined in Eq. (8), using the full record of 1950–90
(i.e., n 5 N 5 41).

2) Estimate the associated LR, using Eq. (9).
3) Repeat steps 1 and 2 for the combination of all three

models.

Spatial maps of these estimates were generated and
compared to see the relative performances of the models
over different regions, variables, and seasons. In the
current study, the epochal variation (e.g., different de-
cades or ENSO phases) in the performance of the dif-
ferent models has not been investigated.

The confidence levels for the LR are computed using
a bootstrapping procedure that scrambles the observa-
tions in time while maintaining their spatial structure.
The predictor data fields from the GCMs are not ran-
domized. The time series of the predictand (i.e., the
observed precipitation or temperature) is drawn at ran-
dom with replacement from the original time series. For
each year sampled, the entire spatial field corresponding
to a historical year is drawn at random. This is done to
preserve the spatial correlation structure in the predictor
and predictand fields. The LR values at each grid point
(2861 grid points in all) are then computed. Ten such
realizations of 41 yr each are drawn. This provides 10
3 2861 LR values, from which the 90th, 95th, and 99th
percentile are obtained. Although a larger sample size
is typically preferred for bootstrapping, very small var-
iability in the LR values corresponding to these per-
centiles across realizations at the level of 10 simulations
were observed. The significance levels are estimated
separately for each case—single predictive model versus
the multimodel combination—to reflect the changed
problem definition.

5. Results

Likelihood ratios and weights for the different models
and for their combination, for both precipitation and
temperature forecasts, and for all seasons, were ob-
tained. A few selected results are presented here. All
results are based on the time period 1950–91.

a. Individual model skill

Figure 1 shows the spatial map of LR for JFM pre-
cipitation for the three models. The three colors—blue,
yellow, and red—indicate regions where the LR attains
significance at the 90%, 95%, and 99% confidence lev-
els, respectively. All three models have statistically sig-
nificant LR values in regions with well-known ENSO
teleconnections (the western Pacific, and northeastern
South America). In addition the ECHAM model shows
skill over southern parts of the United States. NCEP
appears to show significant skill over South Africa,
while CCM shows skill over eastern Africa and southern
South America. It is noted that ECHAM exhibits rather
broad areas where the LR value was marginally greater
than 1, but below the threshold value for statistical sig-
nificance. For all models, the majority of land area of
the world shows no significant skill relative to clima-
tology. This is consistent with many previous studies—
the result of large internal variability, particularly in the
extratropics, and only a limited set of externally forced
signals, each with limited domain of influence.

Figure 2 shows the spatial map of model weights.
Note that the weights are normalized, such that for N
5 40 and m 5 10, a weight of 10/50 [i.e., wm/(n 1
wm)] or 0.2 is equivalent to w 5 1 in the original no-
tation, which was the threshold for a model ensemble
member to be treated as the equivalent of one year of
climatology. The spatial maps of the weights are gen-
erally consistent with the LR maps. In areas where in-
dividual models have relatively high LR scores, a rel-
atively high weight is assigned (e.g., South Africa for
NCEP, southern South America for CCM, west coast of
the United States for ECHAM). There are many areas,
especially in the midlatitudes where the GCMs perform
worse than climatology (weight below 0.2, the white
space in the figure indicates a weight of 0).

Figures 3 and 4 show the spatial maps of LR and
model ensemble weight for temperature for the AMJ
season. All the models generally show significant LR
values in the western Pacific, northern and northeastern
parts of South America, southern United States, and
southwestern Africa. Note that the LR values are rela-
tively high over most near-coastal or island locations in
all of the models. This result is expected due to the fact
that the model simulations analyzed here are run with
prescribed observed SST, which should influence sig-
nificantly and preferentially the coastal and island re-
gions. The skill levels should be expected to diminish
in a true forecast situation, where SST must also be
predicted. The model weights are generally consistent
with the LR maps. The majority of regions outside the
Tropics and away from the coasts once again show no
significant skill in the models. Within the Tropics, no-
tably larger areas with significant LR values and weights
are obtained for temperature than for precipitation.
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FIG. 1. Spatial map of LR values for precipitation for the JFM season, for the three models, when considered individually.
The three colors shown correspond to values that exceed the 90%, 95%, and 99% significance level determined through a
Monte Carlo test.
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FIG. 2. Spatial map of model weights for precipitation for the season JFM, when models are regularized individually. The
weights have been normalized so that the weight for the model and for climatology sums to 1. A normalized weight less
than 0.2 indicates that each model ensemble member contributes less than 1 yr of climatology.
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FIG. 3. Spatial map of LR values for temperature for the season AMJ, for the three models when considered individually.
The three colors shown correspond to values that exceed the 90%, 95%, and 99% significance level determined through a
Monte Carlo test.



1802 VOLUME 130M O N T H L Y W E A T H E R R E V I E W

FIG. 4. Spatial map of normalized model weights for temperature for the season AMJ, when models are regularized
individually. A normalized weight less than 0.2 indicates that each model ensemble member contributes less than 1 yr of
climatology.
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FIG. 5. (top) Spatial map of LR values for precipitation for the season JFM from model combination. The three colors
shown correspond to values that exceed the 90%, 95%, and 99% significance level determined through a Monte Carlo test.
The LR values are higher than for the corresponding significance levels for a single model, reflecting the additional parameters
used. (bottom) Spatial map of the weights for climatology in the model combination. A high weight (much greater than 0.25)
for climatology reflects a situation in which the models are not informative.

b. Multimodel combination

Figure 5 shows the spatial map of LR, and the cor-
responding climatology weights (wj*), for JFM precip-
itation based on the multimodel combination. Somewhat
larger areas with significant LR values can be seen—
indicating that by combining the models there is a gen-
eral improvement overall, compared to any individual
model (see Fig. 1). Note that the values of LR corre-
sponding to the same level of significance are now high-
er than for the case of a single model. This is to be
expected since a larger number of coefficients is now
being estimated and hence a price must be paid for the
reduced degrees of freedom. For areas where all the
models had something to say, there is improvement in
skill, reflecting the increased effective sample size of
conditional information relative to the marginal infor-

mation presented by climatology. However, the statis-
tical significance levels have increased almost as much,
reflecting in this case the variance reduction to be ex-
pected from correlated predictors.

The performance of a simpler, equal weights approach
for combining the GCM forecasts, using a straight av-
erage of the categorical probabilities from the three
GCMs, was also assessed. Results for the JFM precip-
itation forecasts are illustrated here. Maps of the LR for
the equal weights combination relative to climatology
and the LR for the optimal combination to the equal
weights combination, respectively, are presented in
Figs. 6a and 6b. Comparing Figs. 5a and 6a, there is
seen an appreciable decrease in the regions with skill.
This is to be expected since the skill of the individual
models varies regionally. From Fig. 6b, it can be seen



1804 VOLUME 130M O N T H L Y W E A T H E R R E V I E W

FIG. 6. (top) Spatial map of LR values for ‘‘equal weights’’ model combination relative to climatology, for JFM precipitation.
(bottom) LR values for the optimal model combination relative to the equal weights combination, for JFM precipitation. The
three colors shown correspond to values that exceed the 90%, 95%, and 99% significance level determined through a Monte
Carlo test.

that the likelihood ratio of the optimal model to the
equal weights model exceeds the 90% significance level
over most of the world. Indeed, the equal weights model
underperforms climatology over a large area.

Figure 7 shows the spatial map of LR and the cor-
responding weights for climatology for AMJ tempera-
ture, based on the optimal multimodel combination.
Compared to precipitation (Fig. 5), one can see a sub-
stantial increase in the size of contiguous regions with
significant LR values across the globe, particularly in
the Tropics, and along continental margins, as men-
tioned previously. Correspondingly, the weights for cli-
matology in these regions are much smaller—indicating
that the models have information content. It is well
known that temperature exhibits a larger spatial corre-
lation scale than precipitation. From this alone, the im-
proved results with respect to temperature are not sur-

prising. The results for other seasons follow a similar
pattern.

The LR values at a given grid box from the model
combination can be lower than the LR values from any
one model—this is due to higher variability in the se-
lection of the weights when solving for the additional
parameters. Using the methods described here one can
evaluate whether or not the results from a single model
or the model combination are robust at a grid point or
region of interest. Detailed comparisons of regional skill
are also possible in terms of the LR and the w values.
One could, for example, compute a spatial likelihood
for the region for each year (as the product of the prob-
ability ascribed to the category with the ‘‘hit’’ at each
grid box), and examine the time series of this skill mea-
sure to get some insights as to the conditions under
which skill improves.
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FIG. 7. (top) Spatial map of LR values for temperature for the season AMJ from model combination. The three colors
shown correspond to values that exceed the 90%, 95%, and 99% significance level determined through a Monte Carlo test.
(bottom) Spatial map of the weights for climatology in the model combination. A high weight (much greater than 0.25) for
climatology reflects a situation in which the models are not informative.

c. Sensitivity to objective function

The analysis presented was repeated using the widely
used ranked probability skill score (RPSS; see, e.g.,
Kumar et al. 2001), as the objective to be maximized
instead of the likelihood ratio. The RPSS is computed
as follows. First, we obtain a ranked probability score
for the model forecast:

N K

2RPS 5 (Q 2 O ) (11)O Omod kt kt
t51 k51

where Qkt is the multimodel cumulative forecast prob-
ability for category k at time t, Okt is the corresponding
cumulative ‘‘observed probability,’’ where the category
probability is taken to be 1 for the category that was
observed to occur and 0 for the others. Next, we obtain
a similar score for the climatology forecast:

N K

2RPS 5 (C 2 O ) , (12)O Oclim kt kt
t51 k51

where Ckt is the cumulative climatology probability for
category k at time t (1/3 for a tercile category). Finally,
the RPSS is obtained as

RPSS 5 1.0 2 (RPS /RPS ).mod clim (13)

We applied the model evaluation and combination pro-
cedures described in section 3, but using the RPSS [Eq.
(13)] as the objective function as opposed to the log
likelihood function [Eq. (8)]. The results using RPSS
for JFM precipitation are presented in Fig. 8. The re-
gions with significant RPSS (evaluated using a Monte
Carlo procedure analogous to the one described earlier)
match very closely to significant LR regions (Fig. 5).
Figure 8b shows the climatology weights for the model
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FIG. 8. (top) Spatial map of RPSS values for JFM precipitation, based on the model combination. The three colors shown
correspond to values that exceed the 90%, 95%, and 99% significance level determined through a Monte Carlo test. (bottom)
Spatial map of the weights for climatology in the model combination.

combination that, again, are similar to those obtained
from LR (Fig. 5b). Thus, at least in terms of these two
objectives functions, the results are similar.

d. Forecast example

An example of a combined model forecast for the
AMJ 2000 precipitation in Africa is provided in Fig. 9.
The IRI net assessment precipitation forecast, which was
derived subjectively using outputs and retrospective
skill assessments for the same models, is shown in Fig.
10. It is broadly consistent with the forecast generated
by the objective scheme shown in Fig. 9, but has some-
what less spatial structure, and somewhat more conser-
vative category probabilities overall. This is consistent
with the forecasters’ intentions to reflect additional
sources of uncertainty in the net assessment forecasts
(e.g., the uncertainty in forecast SST, not accounted for

in the simulation data analyzed here). The observed pre-
cipitation for the season (AMJ 2000) is shown in Fig.
11. The net assessment forecast called for increased
probability of lesser precipitation over the greater Horn
of Africa region and parts of the southwestern coast of
Africa. It also called for a higher probability of wet
conditions over southeastern and south-central parts of
Africa, a small region on the west coast, and normal
precipitation elsewhere (Fig. 10). The category proba-
bilities obtained from the model combination broadly
agree with the net assessment forecast over the greater
Horn of Africa region and south-central Africa—that is,
there is an increased probability of category 3 (higher
precipitation) over southeastern and south-central Africa
and a higher probability of category 1 (lower precipi-
tation) over the greater Horn of Africa region (Fig. 9).
Further, the model combination indicates a slightly high-
er probability of dry conditions over western Africa—
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FIG. 9. AMJ 2000 forecast probabilities from model combination for (top) category 3 (upper
tercile), (middle) category 2 (middle tercile), and (bottom) category 1 (lower tercile).
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FIG. 10. IRI net assessment forecast for AMJ 2000 precipitation.

FIG. 11. Observed precipitation for AMJ 2000. Data is based on Climate Anomaly Monitoring System outgoing
longwave radiation Precipitation Index (CAMS-OPI) analysis available at the NOAA Climate Prediction Center.

that is enhanced probability for category 1 (low pre-
cipitation) in Fig. 9c. The observed precipitation indi-
cates increased precipitation over southeastern and parts
of south-central Africa, and reduced precipitation over
the greater Horn of Africa region, as called for by both
the forecasts. Western Africa shows an overall normal
to dry condition, consistent with the model combination
forecast. For completeness, maps of historical AMJ pre-
cipitation forecast skill (likelihood ratio) and climatol-
ogy weights for the model combination are presented
in Fig. 12.

A definitive comparison of the performance of the
objective forecast scheme and the net assessment fore-
casts cannot be made, given the small sample of the
latter that are available (less than 20 at present). Qual-
itatively, we have found that the results are generally
quite similar. This is encouraging—it suggests that ob-
jective methods can be competitive with current meth-
ods, while providing extra flexibility and an ability to
address longer retrospective periods for validation.

6. Discussion

A new Bayesian methodology for assessing skill and
combining forecasts from different models is presented.
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FIG. 12. (top) Spatial map of LR values for precipitation for the season AMJ from model combination. The three colors
shown correspond to values that exceed the 90%, 95%, and 99% significance level determined through a Monte Carlo test.
(bottom) Spatial map of the weights for climatology in the model combination.

The methods can be applied to ensemble forecasts from
dynamical or statistical models. The categorical struc-
ture adopted allows a probabilistic forecast to be gen-
erated at a resolution (number of categories) desired by
the user, and automatically considers the correction of
bias in the marginal distribution of forecasts. In addition,
it incorporates the effect of increasing uncertainty as the
number of categories increases for fixed sample size or
the baseline information on climatology at the site in-
creases or decreases. An estimate of the uncertainty dis-
tribution of the estimated probabilistic forecast is also
provided as a by-product of the algorithm. Selected ob-
jective criteria for evaluating model skill were also in-
troduced. The least squares criteria used by classical
regression-like schemes presume an underlying Gauss-
ian error structure. Generalized linear models adapt to
other distributions. However, these have not been ex-
plored in the particular context discussed here. Often,

competing approaches use only the ensemble mean and
hence lose some of the information that may be avail-
able. The nonparametric flavor of the categorical ap-
proach and the likelihood ratio is consequently attrac-
tive, particularly when dealing with variables such as
precipitation whose marginal distribution may be highly
skewed.

Unfortunately, the categorical structure of the model
is also a limitation. The process of discretization induced
by the categories does not allow one to properly consider
the ordinal structure of the original data. Each of the
categories is considered independent and the binary cri-
teria (success if in category and failure if not) applied
to judge performance is not cognizant of the distance
between the forecast and the observation. In this sense,
an approach based on the cumulative distribution func-
tion or on regression may do better since the full range
of values of forecast and observation would be consid-
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ered. This problem may also be ameliorated if one
changed the manner in which the likelihood function is
calculated. For instance, one could estimate the posterior
likelihood as

N K

L(w) 5 g (k*)Q (14)P O k kt
t51 k51

where k* is the category corresponding to the obser-
vation, gk(k*) is a discrete kernel or weight function
that sums to 1 and appropriately weights the category
probabilities (e.g., the category k* gets the highest
weight, the adjacent categories get a smaller weight, and
the weights decrease with distance from k*). Examples
of some kernel functions that are appropriate in this
context can be found in Rajagopalan and Lall (1995).
Whether the additional complexity of using an approach
such as this is warranted needs to be investigated. There
are many reasons to prefer an underlying continuous
model to the discretization artificially imposed by the
categories. We are exploring alternative formulations in
the same Bayesian spirit to address this issue.

The algorithm presented here has been applied in-
dependently at each grid point. Information on the spa-
tial structure of model forecasts or observations is con-
sequently not used. Further, there are results suggesting
that in many areas model skill is present only under
certain conditions, for example, ENSO events. Thus, the
temporal structure of the observation and forecast fields
may also be of interest. The lack of consideration of
spatial and temporal structure in these fields is a defi-
ciency that also plagues competing algorithms (e.g.,
Krishnamurti 1999, 2000; Mason et al. 1999). A hier-
archical modeling strategy (see Gelman et al. 1995),
where the model parameters (e.g., w) are allowed to
have prior distributions that embody spatial and tem-
poral structure, may be one possible strategy for ad-
dressing this problem. Such a framework would also
allow for a more realistic accounting of the uncertainty
in model specification, and in properly computing the
posterior odds considering parameter uncertainty. We
are in the process of investigating such a strategy.

It is desirable to better understand the variability in
model selection as a function of the sample size avail-
able for model fitting (N), the sample size for clima-
tology (n), and the ensemble size (m). Numerical ex-
periments to test the performance of the algorithm in
this respect need to be conducted. We have deferred
some of these experiments awaiting the development of
a strategy for consideration of space–time structure. Ac-
tually, since we have access to the uncertainty distri-
bution of the posterior probabilities as a by-product of
the estimation process, it is possible to address this ques-
tion immediately, in a limited way. A sophisticated de-
cision maker who is interested in using the probabilistic
forecast could generate an ensemble of categorical,
probabilistic forecasts from the Dirichlet distribution
specified in Eq. 6. These forecasts could then be used

in a formal decision-making process (e.g., reservoir sim-
ulation) to derive optimal decision rules considering the
uncertainty in the probabilistic forecast. In the hierar-
chical modeling context, one would have a prior dis-
tribution for w, which would be used to develop a pos-
terior distribution for w using the posterior likelihood
or other objective function. Then, instead of a point
value for w, one would use this posterior distribution
for w to develop a posterior distribution for the category
probabilities. The uncertainty in selecting w from finite
N, n and m, is naturally accounted for in this process.

The algorithm reported here is currently being used
in the context of the real-time monthly climate forecasts
that the IRI produces. It is hoped that in the near future
this and related approaches will provide the opportunity
to produce objective, probabilistic forecast products tai-
lored to multiple applications. The objective component
is crucial to the ability to produce hindcasts over time
periods long enough to provide reliable assessments of
performance in practical decision-making contexts, and
to update these assessments with continually evolving
models and forecast methodologies. The ease with
which such combination algorithms can be adapted to
alternative objective functions is seen as highly bene-
ficial to producing specialized products of greater utility
in specific problem areas such as agriculture, water re-
sources, public health, fisheries, and disaster manage-
ment.
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