NONHOMOGENEOUS MARKOV MODEL FOR DAILY PRECIPITATION
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AsstRAcT: This paper presents a one-step nonhomogeneous Markov model for describing daily precipitation
at a site. Daily transitions between wet and dry states are considered. The one-step, 2 X 2 transition-probability
matrix is presumed to vary smoothly day by day over the year. The daily transition-probability matrices are
estimated nonparametrically. A kernel estimator is used to estimate the transition probabilities through a
weighted average of transition counts over a symmetric time interval centered at the day of interest. The
precipitation amounts on each wet day are simulated from the kernel probability density estimated from all
wet days that fall within a time interval centered on the calendar day of interest over all the years of available
historical observations. The model is completely data-driven. An application to data from Utah is presented.
Wet- and dry-spell attributes [specifically the historical and simulated probability-mass functions (PMFs) of
wet- and dry-spell length] appear to be reproduced in our Monte Carlo simulations. Precipitation amount

statistics are also well reproduced.

INTRODUCTION

Markov chains (Gabriel and Neumann 1962; Todorovic
and Woolhiser 1975; Smith and Schreiber 1974) have been a
popular method for modeling daily precipitation occurrence.
Typically a two-state (wet or dry), one-step model is used,
and the state transition probabilities (e.g., transition from a
wet day to a wet day, a wet day to a dry day) are estimated
from the data. One problem with such a description is that
the transition probabilities may vary over the year, i.e., the
process of precipitation occurrence is nonstationary.

Two approaches are commonly used to address this prob-
lem. In the first approach, the year is divided into periods
(or seasons) and the transition probabilities are estimated
separately for each period. There is an implicit assumption
that the occurrence process is stationary over the period. This
assumption may not be tenable. The second approach is to
consider essentially a nonhomogeneous Markov process by
allowing the transition probabilities to vary systematically over
the year, and to model such a variation through a Fourier-
series expansion (Feyerherm and Bark 1965; Woolhiser et al.
1973; Woolhiser and Pegram 1979). This can be an effective
approach where adequate data is available, and the season-
ality in the precipitation process can be captured by a few
Fourier-series terms. Our nonparametric analyses (Rajago-
palan and Lall 1995) of the seasonality of precipitation for
stations along a meridional transect in the western United
States, suggests that sometimes the number of Fourier-series
terms needed may be large relative to the amount of data
available.

In this paper, a nonhomogeneous Markov (NM) model is
presented that uses kernel methods to estimate a nonho-
mogeneous transition-probability matrix, and to estimate a
corresponding nonstationary probability-density function
(PDF) of daily precipitation amount. Kernel methods are
local, weighted averages of the target function (relative fre-
quency of occurrence in this case). Since they are capable of
approximating a wide variety of target functions with asymp-
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totically vanishing error, and use only data from a “‘small”
neighborhood of the point of estimate, they are considered
nonparametric. Fourier-series methods are shown to be a
subset of kernel methods by Eubank (1988, secs. 3.4 and 4.1).
A review of hydrologic applications of nonparametric func-
tion estimation methods is provided by Lall (1995).

A brief description of the Markov chain and its terminology
is first presented as a background to motivate our formula-
tion. The general structure of the NM model proposed is next
outlined with the nonparametric estimators for the transition
probabilities. The simulation procedure is then outlined. Re-
sults from an application of the model to a precipitation data
from Utah follow. Musings on the results and discussion of
some limitations of the approach conclude the paper.

BACKGROUND

The basic assumption in a two state Markov-chain model
is that the present state (wet or dry) depends only on the
immediate past. The transition probabilities for transitions
[i.e., wet-wet (WW), wet-dry (WD), dry-wet (DW), dry-dry
(DD)] between the two states [wet (W) or dry (D)] are es-
timated directly from the data through a counting process.
Two elements of the transition-probability matrix are the
probability of a dry day following a wet day, Py, = a,, and
the probability of a wet day following a dry day, P,, = a,.
The other probabilities, the probability of a wet day following
a wet day, Py, and the probability of a dry day following a
dry day, Ppp, are (1 — a;) and (1 — a,), respectively.

Seasonal variations in the transition probabilities can be
accounted for by expressing the changing transition proba-
bilities through a Fourier series (Woolhiser and Pegram 1979;
Roldan and Woolhiser 1982). As an illustration, the transition
probability Py, can be expressed as follows:

Pup() = Pyp + 2, ¢, sinRutk/365+6,), 1=1,2,...,365
k=1
¢y

where m = maximum number of harmonics required to de-
scribe the seasonal variability of the transition probability;
Py,p = annual mean value of the parameter; ¢, = amplitude;
and 6, = phase angle in radians for the kth harmonic.

The means, amplitudes, and phase angles are estimated by
numerical optimization of the log-likelihood function, as de-
scribed by Woolhiser and Pegram (1979) and Roldan and
Woolhiser (1982). Fourier-series representations of parame-
ters of a first-order Markov chain for precipitation have been
used (among others) by Feyerherm and Bark (1965), who
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used least-squares techniques for parameter estimation, and
by Stern and Coe (1984), who formulated the estimation
problem as a generalized linear model to obtain maximum
likelihood estimators.

The degree of dependence in time is limited by the order
(i.e., the number of past days the present state is presumed
to depend on) of the Markov chain (MC). Feyerharm and
Bark (1967) and Chin (1977) suggest that the order may need
to be seasonally variable as well. Lack of parsimony is a
drawback of MC models as the order is increased. A number
of researchers (Hopkins and Robillard 1964; Haan et al. 1976;
Srikanthan and McMahon 1983; Guzman and Torrez 1985)
have also stressed the need for multistate MC models that
consider the dependence between transition probabilities and
rainfall amount. In this paper, we shall consider only a two-
state, first-order Markov chain. Extensions to other situations
follow in the same spirit.

MODEL FORMULATION

The NM model that we present allows the one-step tran-
sition probability matrix to change over each day, thus cap-
turing the day-to-day variation in the occurrence process in
a natural manner. The daily transition-probability matrices
are estimated using a discrete kernel estimator, which we
describe in the following section. Daily-precipitation-occur-
rence sequences are then simulated using the transition-prob-
ability matrices. To complete the model, precipitation amounts
on each wet day are simulated from the nonparametric prob-
ability density estimated from all wet days that fall within a
time interval or bandwidth centered on the calendar day of
interest over all the years of available historical record. The
model is data driven, i.e., all parameters are estimated di-
rectly from available data.

Transition Probabilities and their Estimation

The precipitation occurrence process is shown in Fig. 1.
From the daily precipitation record we can obtain four types
of data (for illustration refer to Fig. 1), which are (1) the day
indices £,, , £, . . . , I, of nw wet days; (2) the day indices
Loy by« oo s by, Of nd dry days; (3) the day indices t,4,, tya,

o bea,, Of the nwd days on which a transition occurs from
wet to dry, meaning days f,,4,, t,.4,, €tc., are wet and days ¢,,,
+ 1, t,4, + 1, etc., are dry; and (4) the day indices fa, , fuw.,

< taw,,, Of the ndw days on which a transition occurs from
dry to wet, meaning days £, , fu.,, €tc., are dry and days Liw,
+ 1, ¢, + 1, etc., are wet. ‘A day mdex refers to a number
between 1 and 366 representing the calendar day of the ob-
servation. From these we estimate the transition probabilities
P,..(1) (probability of transition from a wet day on calendar
day ¢ to a dry day on calendar day ¢ + 1) and P,,(t) (prob-
ability of transition from a dry day on calendar day ¢ to a wet
day on calendar day t+ + 1). The other two transition prob-
abilities [namely P, (t) and P,,(¢)] can be estimated directly
from the relations P,.,(¢t) + P,.(t) = 1 and P, (t) + P.(t)
= 1. The transition probabilities for calendar day ¢ are es-

t
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FIG. 1. Precipitation-Occurrence Process (t,, t,, ... = Day iIn-
dices;t, ,t,,,. .. = Wet-Day Indices; l,,, {,,, . .. = Dry-Day Indices;

towys tawys - - - = Day Indices ot Transition from Dry Day to Wet Day;
and t,,q,, L.a0 - - - = Day Indices of Transition from Wet Day to Dry
Day)
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timated from the data using discrete nonparametric kernel
estimators.

For a traditional Markov chain, the transition probabilities
are estimated simply as the ratio of the number of transitions
in the historical record to the number of wet or dry days in
the historical record, as appropriate. Here we try to localize
such estimates about the calendar day of interest using kernel
estimators. The general idea is that the events (i.e., a wet or
dry day, or a state transition) occurring near the calendar day
of interest should be given more weightage, and the ones
further away should be given a lower weightage. The resulting
kernel estimators for the transition probabilities P,,(¢) and
P,.(t) are given as follows:

nwd t — th’
K i
'Zl ( h wd )

Pty = ———— @

E K< hur/ ‘)

ndw t — t(lw
K i
‘21 ( h d >

W

Pu(t)y = ————— )

where n,.,, = number of transitions in the historical record
from wet day to dry day; n,, = number of transitions in the
historical record from dry day to wet day; n, = number of
dry days in the historical record; n, = number of wet days
in the historical record; K( ) = kernel function (or weight
function); k£, = a kernel bandwidth; ¢+ = calendar day of
interest; and the ¢ s have the definitions described earlier.
Note that the estimates on any calendar day ¢ are obtained
by using the information from days in the range [t — h(,, ¢
+ h,]. Also, the definition of calendar dates is periodic, i.e.,
day 365 and day 1 are recognized as one day apart for a non-
leap year. The contribution to the estimate of an event that
lies within this range is determined by the kernel or weight
function K( ), which is described below.

Since we have a discrete situation (i.e., each day being
discrete) we use the discrete kernel developed by Rajago-
palan and Lall (1995) as

3h

BT

(1 -x%) for |x|=1 O]
where x = (t — t.,)/h,, measures how far an event ¢, which
lies within a bandwidth A, of the day ¢, is from ¢; and h, =
an integer.

The kernel in (3) was derived from the consideration that
the sum of all weights ascribed to events that lie within a
bandwidth A, of ¢, sum to 1, i.e., Z}_ _, K(x) = 1; that the
weights be symmetric on either side of ¢, i.e., £}_ _; xK(x)
= 0; that each weight be positive; and that the resulting
estimates of probability have minimum mean square error.

The estimators in (2) and (3) are fully defined once the
respective bandwidths are specified. We choose the band-
width using a least squared cross validation (LSCV) proce-
dure (Scott 1992, p. 225), where the bandwidth is chosen that
minimizes a LSCV function, which is given as follows:

LSCV(R) = = 3 [1 = P_W)F )
i=1

where PW,(t) estimate of the transition probability (P,
or P,,) on day t, dropping the information on day f; and n
= number of observations (n,, or n,,). Here we assume a
prior probability of transition to be 1 on the days on which
transitions have occurred, hence the 1 in (5). The bandwidth



is searched from 1 to 182 (length of half a year). Once the
transition probabilities are estimated for each day in the his-
torical record, the simulation of the precipitation occurrence
for each day using the transition-probability matrix of the
previous day is possible.

Precipitation-Amount Generation

Precipitation amounts for the wet days are generated from
a kernel probability density estimated from all wet days that
fall within a time interval or bandwidth centered on the cal-
endar day of interest over all the years of historical record.
This amounts to two steps: (1) choosing the time interval or
bandwidth; and (2) generating from the kernel estimated PDF.

An appropriate bandwidth for localizing the estimate of
the probability density of precipitation amount may be ob-
tained by determining the bandwidth appropriate for esti-
mating the probability that a day is wet. If the probability of
daily precipitation is low, the precipitation data will be sparse,
and the bandwidth needed for stabilizing the variance of the
estimated probability distribution of precipitation will be large.
Conversely, as the probability of daily precipitation is high,
a large number of days with precipitation will occur and the
bandwidth needed to localize the estimate can be smaller.

Consequently, we first consider the smoothing of the pro-
portion of wet days (p, = n,/NT, where n, = number of times
calendar day t was wet; and NT = total number of calendar
days ¢ in the historical record) on each calendar day ¢ = 1,
2,...,366. These raw proportions are smoothed using the
discrete kernel (DK) estimator of Rajagopalan and Lall (1995)
which in this case is

p= k(54 ©)

where K( ) = discrete kernel as defined by (3); and 4, =
bandwidth in which we are interested. The bandwidth 4, can
be obtained using the LSCV procedure similar to (5) as given
by Rajagopalan and Lall (1995) as

366 366
LSCV(h,) = 2 (B)* =2 2 p.p, (7)
where p_, = estimate of the calendar day ¢, by dropping the

information on that day.

Once we estimate the time interval h,, the next step is to
pick the precipitation amounts on all the wet days that fall
within the time interval A, from the day of interest in all the
years of the historical record. Let us say that the precipitation
amounts so picked from the historical records are y,, y,, . . . ,
Y. and t, t,, .. ., t,, are the corresponding calendar-day
indices. The task now 1s to generate precipitation amount for
the calendar day ¢, which is a wet day. This can be accom-
plished by fitting a conditional PDF f(y|¢) [see (10)] and then
simulating from it. This step is carried out for each wet day
that is simulated. Before describing the simulation procedure,
we introduce a kernel density estimator for continuous var-
iables, which is given as follows:

-1 s y— ¥
ﬂw—ngK(hy) (®)
where K.( ) = a univariate, continuous kernel; and A, =

bandwidth. Here we use the Epanechnikov kernel given by
K.(x) = 0.75(1.0 — x?) for |x|=1
=0.0 )

otherwise, where x = (y — y;)/h,. For a detailed exposition
of kernel density estimation for continuous variables and is-

sues relating to bandwidth selection we refer the reader to
Silverman (1986) and Scott (1992), and for kernel-density
estimation methods with specific application to precipitation
modeling we refer to Lall et al. (1995).

A logarithmic transform of the precipitation data prior to
density estimation is often considered. Such a transformation
is also attractive in the kernel density estimation (KDE) con-
text because it can provide an automatic degree of adapta-
bility of the bandwidth (in real space). This alleviates the
need to choose variable bandwidths with heavily skewed data,
and also alleviates problems that the KDE has with PDF
estimates near the boundary (e.g., the origin) of the sample
space. The resulting KDE can be written as

_ 1 &1 log(y) — log(y)
f(y) - np i=1 h.vy K. [ hyy ] (10)

where h,, = bandwidth of the log transformed data. This is
chosen using a recursive approach due to Sheather and Jones
(1991) (SJ) to minimize the mean integrated square error
(MISE) and is recommended by Lall et al. (1995) for precip-
itation data. -

The two-step procedure just discussed can be considered
more formally through the conditional PDF f(y|t), defined
using a product kernel representation as

N — log(y,
f(ylt)=71—2Kf[og(y) Og(y,)]

YRy i=1 hyy

t -t & t— ¢
K<h ) ZIK(h—> (11)

(4 i

Eq. (11) states that the conditional probability density of
a rainfall amount y on calendar day ¢ is obtained by consid-
ering a window of width £, centered at ¢, weighting the pre-
cipitation amounts on wet days that fall within this window
using the kernel K( ), and then forming a density estimate
by further weighting these amounts with the kernel K ().
Strictly speaking, the bandwidths k, and £, , should be chosen
by optimizing a criteria relevant to the conditional density.
The description of our procedure given earlier shows that we
are essentially choosing these bandwidths independently.
McLachlan (1992, pp. 306—308) discusses the simultaneous
selection of bandwidths in each coordinate versus the use of
optimal univariate bandwidths in each direction. It is not clear
that the additional effort of simultaneous selection of the two
bandwidths is justified. Consequently, we choose the band-
widths 4, , and A, by the methods described for the univariate

t-h t t+h
Year1 L ) SERPUIL4 1
2 %/ 364 365
Yeal'l L 1 1 % 1 1
3 ///// 364 365
L 1 1 /A 1 1
YearN = th, 1 th 364 365

-]

'
»—-[;,,_,_,,,.,_ I
;)
L

=

Kemnel Function

1 K(®) = 0.75(1 - t3, for all It < 1

FIG. 2. Precipitation-Amount Generation Process (t = Calendar
Day on which Precipitation Is Required; h, = Time Interval Cen-
tered around Calendar Day t; 1, ..., N = Years in Historical Record;
and Thick Dots = Rainy Days in Historical Record. Kernel Function
Shown at Bottom Is Used to Weight Rainfall Amounts on each of
Rainy Days)
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TABLE 1.

aged over 30 Simulated Precipitation Records

Statistics of Wet-Day Precipitation for Salt Lake City,
Utah; 1961-1991; from Historical Precipitation Record and Aver-

TABLE 2. Statistics of Wet-Spell Length for Salt Lake City, Utah;
1961-1991; from Historical Precipitation Record and Averaged over
30 Simulated Precipitation Records

Standard
Mean wet- | deviation Maximum
day wet-day Fraction of wet-day
precipitation | precipitation yearly precipitation
Statistic (cm) (cm) precipitation (cm)
(M @ (3) 4 (5)
(a) Season 1
25% quantile 0.41 0.48 0.23 3.20
Median 0.41 0.51 0.23 3.45
75% quantile 0.43 0.53 0.24 4.04
Historical 0.38 0.43 0.21 2.34
(b) Season 2
25% quantile 0.48 0.61 0.26 4.42
Median 0.48 0.64 0.27 4.72
75% quantile 0.51 0.66 0.28 5.54
Historical 0.51 0.61 0.28 4.11
(c) Season 3
25% quantile 0.46 0.69 0.24 4.93
Median 0.46 0.71 0.26 5.84
75% quantile 0.48 0.76 0.26 7.29
Historical 0.46 0.74 0.26 5.79
(d) Season 4
25% quantile 0.41 0.48 0.24 3.48
Median 0.43 0.53 0.24 4.32
75% quantile 0.46 0.58 0.25 5.49
Historical 0.43 0.48 0.25 3.12
(e) Annual
25% quantile 0.46 0.61 5.97 —
Median 0.46 0.64 6.48 —
75% quantile 0.48 0.64 8.76 —
Historical 0.43 0.56 5.84 —

case. Rajagopalan et al. (1995) show that bandwidths selected
in this way are often satisfactory. For simulation from the
kernel estimated PDF [such as in (11)], it is not necessary to
explicitly estimate the density f(y|r). The estimation of the
bandwidths k, , and A, as well as the subsequent perturbation
of the historical data is sufficient.

Simulation Procedure

The simulation procedure from the NM model can be de-
scribed in the following steps.

1. From the historical precipitation sequence evaluate the

transition probabilities [ P,,;(£), Py (£), P4, (£), and P, (1)]
for each calendar day ¢ using the estimators described
in the section on transition probabilities and their es-
timation. Similarly evaluate the probability density func-
tion for precipitation amount on day ¢ using the pro-
cedure described in the section on precipitation-amount
generation.

. Start the simulation with a wet or dry day (deciding by
generating a uniform random number U in [0, 1], so if
U = 0.5 then the day is wet else it is dry).

. The precipitation state for the next day is simulated from
the transition-probability matrix for the current day (as
estimated in step 1).

. Precipitation amounts on wet days are generated fol-
lowing the process, illustrated in Fig. 2, which is de-
scribed below:

a. Pick all the wet day precipitation amounts (e.g.,
Yis Y2 - - . » Ynp) from all the years in the historical
record that fall within the window A, centered on the
corresponding calendar day of interest and also the cor-
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Standard
Mean wet- deviation Longest wet-
spell length | wet-spell Fraction of | spell length
Statistic (days) (days) wet days (days)
(1) ) @) (4) (s)
(a) Season 1
25% quantile 1.89 1.29 0.31 9
Median 1.92 1.37 0.32 10
75% quantile 1.99 1.43 0.33 11.8
Historical 1.86 1.29 0.32 10
(b) Season 2
25% quantile 1.87 1.27 0.25 8
Median 1.91 1.34 0.25 9
75% quantile 1.95 1.41 0.26 10
Historical 2.12 1.47 0.27 12
(c) Season 3
25% quantile 1.79 1.23 0.19 8
Median 1.86 1.29 0.20 9
75% quantile 1.91 1.37 0.20 10
Historical 1.60 0.9 0.18 7
(d) Season 4
25% quantile 1.85 1.27 0.25 8
Median 1.87 1.32 0.26 9
75% quantile 1.92 1.38 0.27 10
Historical 1.97 1.36 0.26 9
(e) Annual
25% quantile 1.88 1.32 0.26 10
Median 1.91 1.36 0.26 11
75% quantile 1.94 1.39 0.26 13
Historical 1.31 0.26 12

TABLE 3. Statistics of Dry-Spell Length for Salt Lake City, Utah;
1961-1991; from Historical Precipitation Record and Averaged over
30 Simulated Precipitation Records

Standard
Mean dry- deviation Longest dry-
spell length dry spell Fraction of | spell length
Statistic (days) (days) dry days (days)
1) () ) 4 (5)
(a) Season 1
25% quantile 3.8 3.5 0.67 23
Median 3.92 3.63 0.68 25
75% quantile 4.0 3.75 0.68 27
Historical 3.91 3.64 0.68 30
(b) Season 2
25% quantile 5.21 5.64 0.74 39
Median 5.48 5.91 0.75 46
75% quantile 5.59 6.25 0.76 50
Historical 5.5 5.41 0.73 28
(c) Season 3
25% quantile 6.82 7.12 0.79 44
Median 7.05 7.53 0.80 52
75% quantile 7.26 7.943 0.81 72
Historical 6.87 6.92 0.82 55
(d) Season 4
25% quantile 491 5.47 0.73 38
Median 5.09 5.7 0.74 43
75% quantile 5.28 5.91 0.75 51
Historical 5.21 5.38 0.74 31
(¢) Annual
25% quantile 5.29 6.13 0.74 58
Median 5.41 6.32 0.74 70
75% quantile 5.54 6.67 0.74 86
Historical 5.45 5.99 0.74 61
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responding calendar day indices £, &, . . . , t,,.

b. For the calendar day of interest, pick a historical
wet day to perturb using the bandwidth 4, and the kernel
K(x) to specify the resampling metric. Recall that the
kernel function describes the weight given to each cal-
endar day that lies within ki, of calendar day ¢, which
depend on the *‘distance’” between the two dates relative
to the bandwidth 4,, and the kernel function given in
(4). Let the weights associated with each of np wet days
that are thus identified be wt,, wt,, . . ., wt,,. Now
generate a random integer j between 1 and np from a
probability metric given by these weights.

c. The simulated precipitation amount is y* =
exp(log(y;) + Uh,y]; where y; = precipitation on the

historical-day point picked to be perturbed. The random
variate U is generated from the probability density cor-
responding to the kernel function K.( ). As mentioned
earlier, we have used the Epanechnikov kernel in this
study, and simulation from this kernel is easily accom-
plished using the two-step procedure described in Sil-
verman (1986, p. 143)

. The process (steps 3 and 4) is repeated day by day until

the desired length of record is generated.

MODEL APPLICATION

The model described was applied to daily rainfall data from

Salt Lake City in Utah. Thirty years of daily weather data
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FIG. 5. Boxplots of PMF of Wet-Spell Length over Whole Year, for
Model-Simulated Records along with Historical Values

was available from the period 1961-1991. Sait Lake City is
at 40°46' N latitude, 111°58" W longitude and, at an elevation
of 1,288 m (also mean sea level). Most of the precipitation
comes in the form of winter snow. Rainfall occurs mainly in
spring, with some in fall.

We shall first list some measures of performance that were
used to compare the historical record and the model-simu-
lated record, and then outline the experimental design. The
aim here is to capture the frequency structure of the events
(i.e., the underlying PDF). By “events” we mean the wet-
spell length, dry-spell length, and the wet-day precipitation.
The wet- and dry-spell lengths are defined as the number of
successive wet or dry days. Note that the Markov-chain model
considers only transitions from one day to the next, and does
not explicitly consider spell statistics. Clearly the wet-spell
and dry-spell lengths are defined through the set of integers
greater than 1. We look at model performance both at the
seasonal scale and the annual scale. For the seasonal-scale
comparison we have the year divided into four seasons: win-
ter, or season 1 (January—March); spring or season 2 (April-
June); summer or season 3 (July-September); and fall or
season 4 (October—December).

Performance Measures

The following statistics are computed on an annual basis
and for each seam to judge the performance of the model:

1. Probability-mass function (PMF) of wet-spell length and
dry-spell length, and probability-density function of wet-
day precipitation.

2. Mean of wet-spell length, dry-spell length, and wet-day
precipitation for each.

3. Standard deviation of wet-spell length, dry-spell length,

and wet-day precipitation.

Length of longest wet spell and dry spell.

Maximum wet-day precipitation.

Percentage of yearly precipitation in each season.

Fraction of wet and dry days.

Nowns

Experiment Design

Our purpose here is to test the utility of the NM model.
The main steps involved in this are:

1. Thirty sets of synthetic records of 30 years each (i.e.,
the historical-record length) are simulated using the NM
model.

2. The statistics of interest are computed for each simu-
lated record, for each season, and are compared to sta-
tistics of the historical record using boxplots. The PMFs
of wet- and dry-spell length are estimated using the dis-
crete kernel estimator of Rajagopalan and Lall (1995)
[same as the estimator in (6)] and the PDFs of the wet-
day precipitation is estimated using the estimator in (10).
The statistics listed in the section on performance mea-
sures are computed for the simulated record and com-
pared with those of the historical record.

RESULTS

In this section, we present comparative results (using the
performance measures listed in the section on performance
measures) of the NM model for the Salt Lake City data. The
PMFs/PDFs of the simulated records are compared with those
for the historical record using boxplots, and other statistics
are summarized in Tables 1-3. A box in the boxplots (e.g.,
Fig. 3) indicates the interquartile range of the statistic com-
puted from 30 simulations, the line in the middle of the box
indicates the median simulated value. The solid lines corre-
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FIG. 6. Boxplots of PMF of Dry-Spell Length in Each Season, for Model-Simulated Records along with Historical Values
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FIG. 7. Boxplots of PMF of Dry-Spell Length over Whole Year, for
Model-Simulated Records along with Historical Values

spond to the statistic of the historical record. The boxplots
show the range of variation in the statistics from the simu-
lations and also show the capability of the simulations to
reproduce historical statistics. The plots of the PDFs are trun-
cated to show a common range across seasons and to highlight
differences near the origin (mode).

In each case, the interquartile range across the simulations
show the variability in that statistic across simulations. For
the 30 simulations considered, one can expect some historical
statistics to fall outside the box defined by the interquantile
range.

Fig. 3 shows the boxplots of kernel estimated PDFs of
simulated data of wet-day precipitation and the historical data.
It can be seen that the historical PDFs are very well repro-
duced by the simulations in all the four seasons. The other
statistics are also seen to be well reproduced by the model
for all the seasons and also annual, as can be noticed from
Table 1.

Boxplots of kernel estimated PMFs of simulated data of
wet-spell length are found to enclose the PMF of the historical
data of wet-spell length for all the four seasons in Fig. 4 and
for the annual in Fig. 5. The other statistics are also preserved
quite well by the simulations, as seen from Table 2. Good
performance of the model in reproducing the dry-spell sta-
tistics can be seen from Figs. 6 and 7 and also from Table 3.
The coefficient of skew, the coefficient of variation, the 25%
quantile, and the 75% quantile were also preserved for all
the three variables, but are not shown here.

The extreme statistics (e.g., longest spell length or maxi-
mum wet-day precipitation) exhibit a high degree of varia-
bility in the simulations (refer to Tables 1-3) and an asym-
metric sampling distribution as one would expect.

Note that most of the statistics that we have listed in the
section on performance measures are not explicitly consid-
ered in the model. Hence the good reproduction of PDFs/
PMFs of the three variables is quite interesting. The sugges-
tion is that consideration of nonstationarity in the Markov
chain leads to a first-order model at this site that appears to
capture spell statistics.

SUMMARY AND CONCLUSIONS

A nonhomogeneous Markov model for simulating daily
precipitation is presented in this paper. The traditional Mar-
kov-chain model is extended to consider the smooth variation
in the transition probabilities from day to day, thus attempting
to capture the nonstationarity in the precipitation-occurrence
process. The 2 x 2 daily transition-probability matrix is es-
timated nonparametrically. The primary intended use of the
model is as a simulator that is faithful to the historical data
sequence, obviating the need to divide the year into seasons
and subsequently fitting the Markov-chain parameters sep-
arately for each season. Simulations from the model are shown
to preserve the frequency structure (PDF/PMF) of the wet-

spell length, dry-spell length, and wet-day precipitation at
both the seasonal and annual time scales.

In many cases, the Fourier-series approach to addressing
seasonal variation in Markov-chain parameters may be just
as effective. Recall that the Fourier-series approach can be
shown to be a subset of the kernel approach with a specific
kernel choice. The kernel approach presented here is attrac-
tive because it is relatively parsimonious, locally adaptive,
and extends quite naturally to localizing the probability-den-
sity estimation for precipitation amount as well. Extensions
to higher-order chains or those with more states can be made
in the same sprint. One needs to define the appropriate events
as was done here and go through the solution of the corre-
sponding smoothing problem.

A limitation of the nonparametric density-estimation ap-
proach used here is the rather limited extrapolation of daily
precipitation values beyond the largest value recorded. If this
is a major concern, a suitable parametric density may be fitted
to the local windowed precipitation data. We feel that such
an approach may not be superior since extrapolation of a
parametric density to the tails may suffer from a high degree
of uncertainty as well.
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