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Abstract We examine the characteristics of 3 day total extreme precipitation in the western United
States. Coherent seasonal spatial patterns of timing and magnitude are evident in the data, motivating
a seasonally based analysis. Using a clustering method that is consistent with extreme value theory, we
identify coherent regions for extremes that vary seasonally. Based on storm back trajectory analysis, we
demonstrate unique moisture sources and dominant moisture pathways for each spatial region. In the
winter the Pacific Ocean is the dominant moisture source across the west, but in other seasons the Gulf of
Mexico, the Gulf of California, and the land surface over the midwestern U.S. play an important role. We
find the El Niño–Southern Oscillation (ENSO) to not have a strong impact on dominant moisture delivery
pathways or moisture sources. The frequency of extremes under ENSO is spatially coherent and seasonally
dependent with certain regions tending to have more (less) frequent extreme events in El Niño (La Niña)
conditions.

1. Introduction

The nature of extreme precipitation varies widely across the western United States. For example, the
Southwest is most likely to receive extreme precipitation in the summer, while the Pacific Northwest and
California typically see the largest extreme events in the winter, and the intermountain west tends to
see a more even distribution of occurrence across seasons [Kunkel et al., 1999]. The mean occurrence
day of annual maxima for all stations in the western U.S. clearly shows a peak in the winter months
(December-January-February (DJF)), but in more than 50% of stations, annual maxima tend to occur between
February and July (Figure 1). This motivates a careful examination of how extremes behave both seasonally
and spatially. Past studies have classified the behavior of extreme events regionally throughout the western
U.S. [Groisman et al., 2001; Arriaga Ramírez and Cavazos, 2010; Dos Santos et al., 2011; Dulière et al., 2013; Mullens
et al., 2013; Janssen et al., 2014] and for specific seasons [Warner et al., 2012; Pal et al., 2013; Jiang et al., 2014],
but few have taken a detailed look at both of these pieces. A seasonal analysis is especially important because
while the most likely season for an extreme event may be identified for a specific region, extreme events
can occur at any time of the year and the characteristics of these events vary both seasonally and spatially
[Kunkel et al., 1999].

Extreme precipitation takes many forms in the western U.S. due to complex topography and climatic inter-
actions. Figure 2 shows the average magnitude within each season and the average occurrence day from
the beginning of the season of 3 day extreme events for all stations in the western U.S. (see section 2 for a
complete description of the data). A high degree of variability is present spatially and between seasons in both
the average timing and magnitude of extreme events in the western U.S. and motivates further investigation.
In terms of statistical distributions of extreme events, two weather stations close enough to identically observe
all the same events would necessarily have the same extreme value distributions. Two stations farther apart
might observe some of the same extreme events, but the events might differ in magnitude, perhaps causing
the extreme value distributions to have the similar shape but have slightly different means. Two stations very
far apart, not observing any of the same events and having different climatologies, would exhibit different
statistical distributions, except by chance. How far need we go such that the extreme value distributions at
two weather stations no longer resemble each other and is it possible to create groups of weather stations, or
regions, such that the distributions looks sufficiently similar? This grouping, or clustering, is a straightforward
way of identifying regions for which extreme values behave similarly [Hsu and Li, 2010].
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Figure 1. Occurrence day of annual 3 day precipitation maxima at ∼14,000 stations in the western U.S. (5 day bins).

Past studies have grouped stations by climate divisions [Kunkel, 2003], though these regions are defined for
climatological mean and are not appropriate for extreme values [Jones et al., 2014]. Other studies have used
grid-based groupings [Kunkel et al., 2003], subjective [Maraun et al., 2008; Alexander et al., 2006], and objective
[Jones et al., 2014; Wigley et al., 1984; Dales and Reed, 1989; Neal and Phillips, 2009] regions. Jones et al. [2014]
defined regions in the UK using principal component analysis and clustering of a number of extreme value
statistics. DeGaetano [1998] used a method for defining clusters based on similarity of extreme value cumu-
lative distributions function and spatial proximity. Bernard et al. [2013] used a clustering method specifically
tailored to the characteristics of extreme value distributions.

Given homogeneous clusters of extreme precipitation, dominant moisture pathways and sources of extreme
precipitation can be examined regionally. Moisture pathway and delivery questions can be answered with
back trajectory analysis. Back trajectory analysis calculates the pathway that an air parcel followed such
that it arrives at the location and time of an observed extreme event. Trajectory analysis has been used

Figure 2. (top) Mean magnitude and (bottom) timing of extreme events in the western U.S. In Figure 2 (top), color
indicates magnitude on a log scale. In Figure 2 (bottom), color indicates the average Julian day of occurrence of
maxima at a station from the start of the season. For corresponding standard deviation point maps, please see
the supporting information.
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previously to identify moisture sources and pathways for extreme precipitation [Gustafsson et al., 2010;
Massacand et al., 1998; Reale et al., 2001; Alexander et al., 2015]. In this study we investigate the statistically
likely moisture sources and pathways for extreme events and how these vary between seasons and between
regions [DeGaetano, 1998; Jorba et al., 2004]. This is of importance in modeling, simulating, and predicting
extremes in space and time and, consequently, for resource management.

In addition to a seasonal analysis, we also seek to understand the impact of the El Niño–Southern Oscillation
(ENSO) on dominant moisture pathways and sources in the western U.S. The link between ENSO and extreme
events has been previously explored [Gershunov and Barnett, 1998; Cayan et al., 1999; Higgins et al., 2010; Feldl
and Roe, 2011; DeFlorio et al., 2013]. In El Niño conditions, days with high daily precipitation are seen to be more
frequent than average over the Southwest and less frequent over the Northwest. During La Niña conditions
the signal is typically reversed, but the ENSO events are not all the same and the spatial patterns are complex.

We propose the following research questions related to extreme events in the western U.S.:

1. Can we objectively define coherent extreme value regions and how many regions are appropriate?
2. What are the dominant moisture sources and pathways for each season for these regions?
3. How do seasonal moisture sources pathways change under ENSO regimes?

This paper is structured as follows: We discuss data sources and preprocessing in section 2, methods in
section 3, results in section 4, and discussion and conclusions in section 5.

2. Data and Preprocessing
2.1. Precipitation Data
We obtained daily precipitation data from the Global Historical Climatology Network (GHCN,
http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/) [Durre et al., 2008, 2010; Menne et al., 2012]. Of the
approximately 13,000 stations falling in the study region, we included only those stations with greater than
75% data coverage (at least 50 years of data) from 1948 to 2013, leaving us with 1037 stations.

An extreme precipitation data set was developed using a seasonal block maxima approach. Seasons
were defined as 3 month blocks: winter (DJF), spring (March-April-May), summer (June-July-April), and fall
(September-October-November). For each station, seasonal 3 day maxima were computed for each year in
the record. The extreme events were compiled into a database of approximately 600,000 events.

2.2. Back Trajectories
For each event, back trajectories were computed using the Hybrid Single-Particle Lagrangian Integrated Tra-
jectory (HYSPLIT) model [Draxler, 1999; Draxler and Hess, 1998, 1997]. A back trajectory is a three-dimensional
pathway taken by a parcel of air such that it arrives at a particular location at the time of a known extreme
event. Back trajectories are commonly used in air pollution modeling, but they have also been used for mois-
ture source identification [Lu et al., 2013; Izquierdo et al., 2012; Gustafsson et al., 2010; Jorba et al., 2004; Stohl
and Trickl, 1999]. HYSPLIT requires gridded climate data to calculate back trajectories, as well as a terminal
time and location for the back trajectory. We use the National Centers for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) reanalysis data [Kalnay et al., 2011].

The upper limit on residence time of moisture in the atmosphere is approximately 8 days [Trenberth, 1998]. In
addition, for trajectories computed from wind fields, errors of 20% the distance traveled are expected [Stohl
and Seibert, 1998; Stohl, 1998]. Given this uncertainty and the limit on moisture retention, trajectory locations
were computed hourly for 8 days preceding the extreme event (192 h). Trajectories were initialized for each
event every 6 h during the event period and at 500 m vertical intervals from 0 m to 5000 m above ground level
(totaling 151 trajectories per event). The results were compiled into a database of approximately 8,000,000
trajectories.

3. Methods
3.1. Identification of Extremes Regions
Clustering is an intuitive method for grouping multivariate data. In classical k-means clustering, clusters are
determined so that they minimize the intracluster variance of a metric related to Euclidian distance. For exam-
ple, if points in the plane are clustered based only on x and y position, the k-means algorithm creates k clusters
that minimize the variance of the distance between each point in a cluster. Cluster centers are determined
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by taking the mean of all cluster member points, and thus, the center of each cluster may not be located at a
point in the cluster. The k-means method excels at identifying patterns related to mean behavior of Gaussian
or Gaussian mixture data, but in the context of extreme values, k-means clustering is inappropriate for two
reasons [Bernard et al., 2013].

1. With k-means, clusters are developed based on the mean of observations within a cluster. With Gaussian
data this poses no problem since the mean of Gaussian data remains Gaussian. When applying k-means to
highly skewed extreme value data, k-means centroids are not interpretable, since the mean of generalized
extreme value (GEV) data is Gaussian and not GEV. The solution to this issue is to use an alternative clustering
algorithm called partitioning around medoids (PAM) [Kaufman and Rousseeuw, 1990]. This method creates
clusters that are centered around an existing station and requires no averaging and therefore alleviates the
interpretation issue.

2. The classical methods of assessing pairwise dependence between time series (i.e., Euclidian distance) are
not in compliance with extreme value theory when applied to time series of maxima [Bernard et al., 2013].
The solution to this issue is the use a measure of pairwise dependence called the F-madogram, which is
explicitly tailored to extremal data. This measure of dependence can be used as the distance matrix in the
PAM clustering algorithm, creating an theoretically sound extreme value clustering method.

Further explanation of item 2 above is necessary. Using a variogram called the F-madogram, it is possible to
construct a measure of pairwise dependence that is appropriate for extreme values [Naveau et al., 2009; Cooley
et al., 2006]. Given T samples of bivariate maxima (M(t)

i ,M(t)
j )T from two locations i and j, the nonparametric

estimator for the F-madogram is given by Bernard et al. [2013] as

d̂ij =
1

2T

T∑
t=1

||| F̂i(M
(t)
i ) − F̂j(M

(t)
j )||| , (1)

where

F̂i(u) =
1
T

T∑
t=1

1{M(t)
i ≤u}, (2)

where 1{M(t)
i ≤u} is the indicator function for the event {M(t)

i ≤ u} which returns 1 if the statement is true or 0
otherwise. The entire function returns a proportion of the number of data points that are less than or equal to
a given value u (the empirical cumulative distribution function). It is important to note that the F-madogram
does not depend on the magnitude of extreme events, providing a dimensionless metric that compares
the shape of the extreme value distributions between two stations. Coupled with the PAM algorithm, the
F-madogram provides an efficient, nonparametric, and theoretically sound method for clustering maxima.

Bernard et al. [2013] applied this extreme value-oriented clustering method to station data covering France
with favorable results. Since this method is based on only the shape of the extreme value distribution at a sta-
tion and not on magnitude of event or geographic proximity, as physical extent of a region increases, so does
the chance of misclassification of a station. In other words, extreme value distributions from two geograph-
ically disparate stations may look the same for different physical reasons. To address this issue, we propose
an extension to the clustering algorithm that also incorporates physical proximity of stations. The extension
involves computing a modified version of the madogram

̂̂dij = d̂ij + pij, (3)

where
pij =

qij
∑N

i=1 qij

max
ij

d̂ij (4)

and
qij =

√
(xi − xj)2 + (yi − yj)2. (5)

The computation of pij is simply the Euclidian distance between the station locations scaled such that they
will never exceed the largest value of the original F-madogram. Note that the Euclidian distance formula may
be replaced with the Haversine distance formula if the original data are not projected.
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Figure 3. (top) Extreme regions defined by the clustering method of Bernard et al. [2013] and (bottom) regions defined
with the modified extremes clustering method for large geographic regions.

We present a comparison of the original clustering algorithm of Bernard et al. [2013] (Figure 3, top) and
the same algorithm with our improvements (Figure 3, bottom). Both graphics use only stations with
near-complete record from 1950 to 2014 and eight clusters are specified. In the original algorithm, few clusters
are physically contiguous. We still see similar clustering regions defined in both algorithms, but the inclusion
of a weighted distance matrix into the clustering algorithm greatly improved the cluster coherence.

As a final step in determining extreme regions, we extended the clusters based on point data to cover the
entire study region, so that any stations that did not have sufficient data to be included in the clustering can
be associated with a cluster. This was achieved by using a Dirichlet tessellation (or Voronoi tessellation) of the
points included in the clustering algorithm, attributing all the area closest to a station as part of that station’s
cluster. Note that a region need not be contiguous, though they typically are.
3.1.1. Choosing the Number of Clusters
For the PAM clustering method, the metric typically used for choosing a relevant number of clusters is called
the silhouette coefficient [Rousseeuw, 1987]. Though several metrics exist for aiding in the determination of
the number of clusters required in a nonhierarchical clustering algorithm, the choice always comes down to
an application-based subjective decision [DeGaetano, 2001]. For our application we wanted to choose the
number to be the same for all seasons for the purposes of comparing across seasons, near-optimal in terms of
the silhouette coefficient, reasonably resolute, and manageable from a data analysis perspective. The choice
of eight clusters satisfied these criteria, yet any number of clusters from 6 to 11 would have been reasonable.
Clusters defined with this method exhibit self similarity in that the same clustering method could be applied
again to a single region, further defining more resolute regions.

3.2. Moisture Source Identification
To identify moisture sources, we started by filtering trajectories by those that produced precipitation. We
included 100 trajectories per station from each season that (1) produced the greatest decrease in specific
humidity along a trajectory during the event period and (2) dropped below 1000 m at some point during the
8 day window. We required a height threshold so that we excluded trajectories that did not pick up moisture
during the 8 day window. The loss of specific humidity coupled with the observed maxima provides a high
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degree of confidence that the selected subset of trajectories produced precipitation at the surface. We refer
to this subset as the “rain trajectories.”

The source region identification method is somewhat imprecise, technically providing the end of the source
region. Gustafsson et al. [2010] identified the beginning of a source region as the first time the specific humidity
of a trajectory drops below its ending specific humidity. We found this criteria difficult to apply since in many
cases our ending specific humidity was close to zero. Given the inaccuracy of a single trajectory, using the
point where maximum specific humidity occurred was a sufficiently good indicator of source region location.

From the set of rain trajectories, we identified a moisture source location by the point at which a trajectory
achieved its maximum specific humidity. Minimum physical height would have also been a reasonable indi-
cator; initial exploration indicated that these two indicators gave nearly identical results. Computing moisture
source locations for each rain trajectory and binning the resulting locations on a 1∘ grid, we get a picture of
moisture source regions for a given cluster and season.

3.3. Trajectory Clustering
Trajectory clustering is a well-known statistical method for analyzing moisture transport patterns from tra-
jectory data [Moody and Galloway, 1988; Moody, 1986; Stohl, 1998; Dorling et al., 1992]. The method is an
application of the k-means clustering algorithm to longitudinal data [Genolini and Falissard, 2010] and is
implemented in the KmL package [Genolini and Falissard, 2011]. We used the Haversine distance formula for
calculating intracluster root-mean-squared error.

We fixed the number of clusters in each region and season to 10—the aim was to explore groups produced
with a fixed number of clusters. For each group we determined an average trajectory as the mean of all the
trajectory locations at a given time.

To investigate the ENSO connection, we identified events based on the multivariate ENSO index (MEI) [Wolter
and Timlin, 1998, 1993] (http://www.esrl.noaa.gov/psd/enso/mei/). A season was identified as having strong
El Niño or La Niña conditions if the MEI value was greater than 1 or less than−1, respectively. Trajectories were
composited based on this ENSO classification to identify the teleconnections.

4. Results
4.1. Cluster Descriptions
Clusters were similar between seasons but not identical—the boundaries shift seasonally indicating differ-
ences in extreme distributions across seasons. Remarkably, the centroids of each region fell near the same
location for each cluster (Figure 3, bottom). This is coincidental since each season is clustered independently,
but we leveraged this to describe the regions across seasons. Each region is prefixed with a label that will be
used to refer to the region. (1) (PNW) Western Oregon and Washington roughly extending east to the Cascade
Range; (2) (PNE) Eastern Oregon and Washington and Western and Northern Idaho and far Western Montana;
(3) (MT) Eastern Montana and Northern Wyoming; (4) (AZ) Arizona and in winter, New Mexico; (5) (CB) Western
Colorado, Eastern Utah, Southern/Central Wyoming, and New Mexico (in fall, spring, and summer only); (6)
(NC) Northern California, Southern Oregon, and Western Nevada; (7) (SC) Southern California and Southern
Nevada; and (8) (GB) Great Basin watershed including Western Utah, Eastern Nevada, and Southern Idaho.

4.2. Moisture Sources
Figure 4 shows moisture source regions for each cluster and season. In winter, not surprisingly, more than 98%
of moisture sources for extremes are in the Central to Eastern Pacific Ocean (including the Gulf of California). In
coastal clusters (PNW, NC, and SC) moisture tends to be picked up farther from the coast than inland clusters
(PNE, MT, AZ, CB, and GB).

In summer a few patterns stand out. Moisture is generated in a band of the northwest Pacific that can extend
to the far western Pacific (PNW, PNE, MT, NC, SC, and GB). This pattern can be seen in all clusters except for
the southwest clusters (AZ and CB). In southwest clusters (AZ and CB), the near-coast eastern Pacific, the Gulf
of California, and the Gulf of Mexico appear as dominant moisture sources. A somewhat surprising result is
the dominance of the land as a moisture source for inland clusters (PNE and MT), likely due to a combination
of moisture transport and moisture recycling [Bosilovich and Schubert, 2001; Dirmeyer et al., 2014]. The inland
cluster GB exhibits a mixture of all the summer patterns.
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Figure 4. Moisture source location counts for each season and region, binned on a 1∘ grid. Red dots indicate the center of each extreme region.

Spring and fall can be viewed as transitionary seasons between summer and winter. All of the previously
described patterns are present in varying degrees. In coastal clusters (PNW and NC), due to the direct influence
of the Pacific Ocean, we found the transition between summer and winter to be much less strong than in
inland clusters (MT, for example).

4.3. Moisture Pathways
Figure 5 shows the dominant pathways for extremes in the western U.S., and Table 1 shows the percentage of
trajectories included in each trajectory group. Winter pathways typically run from the winter moisture sources,
i.e., the central to eastern Pacific, directly onto land for all clusters. Many winter pathways for coastal regions
(PNW, NC, and SC) follow well-known atmospheric river (AR) patterns [Newell et al., 1992; Zhu and Newell, 1998;
Ralph and Dettinger, 2011; Neiman et al., 2011; Villarini et al., 2013; Alexander et al., 2015]. With few exceptions,
pathways for the coastal regions (PNW, NC, and SC) mimic winter, while the more inland regions (PNE, MT, AZ,
CB, and GB) display pathways from the Gulf of Mexico, north over land, and from the Gulf of California. Summer
pathways display the most diversity; for example, regions MT and CB display numerous distinct pathways. Fall
and spring pathways appear as a transition from summer to winter, as with the moisture sources.

4.4. ENSO Connections to Extremes
From a back trajectory perspective, we examined the effects of ENSO on the frequency of extremes. Figure 6
shows the ratio of trajectories occurring in La Niña versus El Niño years. A value greater than 1 (blue) indicates
that a station is Niña dominated (experiences relatively more strong events in La Niña conditions), and a value
less than 1 (red) indicates that a station is Niño dominated (experiences more events in El Niño conditions).
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Figure 5. Dominant pathways (determined by trajectory clustering) by region and season.

A north/south divide can be seen in both summer and winter, the north being predominately Niña dominated
and the south being predominantly Niño dominated. The signal is more mixed in the fall and spring. Southern
California is always Niño dominated, and western Oregon is always Niña dominated. Similar north-south
dipoles have been documented in Cayan et al. [1999] and Feldl and Roe [2011] although a direct comparison
was not possible because of dissimilar time windows.

We did not find ENSO to have a strong effect on moisture source locations. We found ENSO to affect trajec-
tory pathways but typically only prior to a moisture source location, indicative of ENSO’s influence on larger
atmospheric circulation patterns. Moisture source locations and delivery pathways from moisture sources to
event locations remained essentially unchanged. See supporting information for additional graphics.

5. Discussion and Conclusions

We have presented a detailed analysis of 3 day total extreme precipitation throughout the western United
States. Using an improved extreme value clustering method, we defined spatially coherent regions for
extremes that vary seasonally and made physical sense based on topography. Based on storm back trajectory
analysis, we were able to demonstrate unique moisture sources and dominant moisture pathways for each
spatial region.

Winter and summer extremes display distinct patterns of moisture delivery, timing, and magnitude through-
out the western U.S. In these terms, winter extremes behave mostly uniform across the west, while summer
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Table 1. Percentage of Trajectories Included in Each Group by Region and Season

Trajectory Group

Season Region A B C D E F G H I J

Fall PNW 20.53 16.26 14.15 9.70 9.59 9.25 7.67 7.39 5.29 0.18

Fall PNE 15.95 15.25 14.27 13.41 10.36 7.87 5.93 5.69 5.63 5.62

Fall MT 19.17 16.34 12.93 10.30 10.19 9.19 7.05 5.84 4.89 4.10

Fall AZ 21.23 18.33 15.77 13.96 9.31 7.24 6.70 5.44 1.85 0.16

Fall CB 23.43 18.25 15.57 12.43 12.23 7.62 4.45 4.24 1.77 0.01

Fall NC 22.21 12.45 12.42 10.57 10.38 8.43 7.56 7.37 5.19 3.41

Fall SC 28.72 15.63 11.68 11.01 10.95 7.89 5.85 5.06 3.19 0.00

Fall GB 21.81 15.55 15.03 10.09 9.07 8.06 7.67 5.29 4.31 3.12

Spring PNW 16.75 16.74 11.99 11.72 10.75 9.86 9.59 5.71 4.86 2.02

Spring PNE 18.07 17.08 14.87 10.43 8.60 8.50 8.26 5.35 5.11 3.73

Spring MT 16.55 14.99 13.91 10.42 10.24 9.56 9.28 9.01 4.10 1.94

Spring AZ 27.27 21.96 17.72 9.55 6.08 4.82 4.64 3.41 2.91 1.63

Spring CB 20.31 15.58 13.51 12.89 10.16 9.64 6.32 5.06 3.77 2.75

Spring NC 20.75 18.83 12.50 11.14 11.02 10.93 6.99 5.06 2.77 0.00

Spring SC 20.27 15.97 14.14 9.97 9.20 8.16 7.99 7.72 4.46 2.12

Spring GB 23.07 16.63 13.23 10.77 8.95 7.76 7.66 5.35 3.56 3.02

Summer PNW 26.50 16.25 15.53 10.21 8.94 8.68 7.74 2.65 2.44 1.05

Summer PNE 25.28 17.05 14.03 9.53 8.64 7.40 6.34 6.12 3.30 2.32

Summer MT 25.31 18.82 16.11 13.57 8.92 5.64 4.72 4.52 1.53 0.88

Summer AZ 19.23 17.33 15.12 14.87 12.77 9.18 5.95 3.42 1.75 0.39

Summer CB 23.14 14.54 14.24 12.29 10.77 9.65 7.36 6.07 1.91 0.00

Summer NC 15.47 15.38 13.01 12.09 9.55 9.45 8.50 6.86 5.18 4.50

Summer SC 21.38 20.65 14.62 11.04 9.30 6.76 5.48 4.09 3.58 3.11

Summer GB 22.12 19.38 15.53 10.38 10.04 9.98 6.98 5.34 0.00 0.00

Winter PNW 21.90 13.95 12.86 11.65 11.39 11.27 8.07 6.54 2.17 0.19

Winter PNE 21.53 18.51 12.54 11.81 9.06 8.52 8.01 4.67 3.62 1.72

Winter MT 20.12 16.71 13.66 11.94 9.33 8.69 5.78 4.85 4.81 4.10

Winter AZ 21.96 17.69 16.06 15.49 11.20 8.98 2.95 2.87 2.79 0.01

Winter CB 23.33 15.76 15.45 13.84 12.95 6.68 6.50 2.48 2.43 0.58

Winter NC 18.81 16.69 16.48 14.49 9.34 8.74 6.63 4.51 3.11 1.20

Winter SC 17.86 17.24 16.08 15.36 10.92 7.38 6.40 4.61 2.89 1.25

Winter GB 25.45 20.81 18.04 11.40 7.61 6.29 4.30 3.81 1.96 0.33

extremes display a much higher degree of spatial variability. Fall and spring manifest as transition peri-
ods between these two regimes. In addition to the Pacific Ocean (including the Gulf of California), the Gulf
of Mexico appears as a moisture source predominantly for inland clusters in fall, spring, and summer. For
northeastern regions mostly covering Wyoming and Montana, the land surface is a dominant moisture
source. Coastal regions including Northern California, Oregon, and Washington source nearly all moisture
directly from the Pacific Ocean. In the summer, southwest regions including Southern California, Arizona, New
Mexico, and western Colorado tend to have multiple dominant moisture pathways from both the Gulf of
Mexico, Gulf of California, and the Pacific Ocean.

ENSO had little effect on moisture sources; moisture pathways were typically only affected prior to moisture
source locations. The occurrence frequency of extremes under ENSO conditions is spatially coherent and sea-
sonally dependent with certain regions tending to have more or less extreme events depending on El Niño
or La Niña conditions.
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Figure 6. Ratio of the number of rain trajectories occurring in La Niña versus El Niño years. For points in red, more rain
trajectories occurred in El Niño seasons, and for points in blue, more rain trajectories occurred in La Niña seasons.

To more precisely determine moisture source locations, the method for determining source region locations
could be improved, although using higher resolution reanalysis data would likely be a better fist step. We
were not able to determine the proportion of moisture that is gained from land versus open water, an appor-
tionment which could be useful in more detailed studies. In addition, when multiple moisture sources are
present for a single region, a more detailed analysis would be required to determine the degree to which
certain moisture sources are active in ENSO conditions.

By only including trajectories with moisture sources during the 8 day back trajectory, we excluded trajectories
that started the 8 day period with high specific humidity. There are likely extreme events produced by air that
gains moisture prior to the 8 day window, but we did not have the means to identify those sources.

The NCEP reanalysis has a very coarse (2.5∘) resolution and thus details of the pathways, such as the specific
paths through the mountains, are not well resolved. For this study, the level of detail was sufficient, but we
could identify higher resolution features such as specific pathway through mountains [Alexander et al., 2015].
The use of newer (and shorter duration) reanalysis such as the ERA-Interim [Dee et al., 2011], the Climate Fore-
cast System Reanalysis [Saha et al., 2010], the Modern-era Retrospective Analysis for Research [Bosilovich et al.,
2012], or the North American Regional Reanalysis [Mesinger et al., 2006] would allow us to examine pathways
in more detail.

This analysis opens the door to many new applications. By sampling the trajectory data conditioned on fea-
tures such as current location of trajectories and sea surface temperatures, short-term projections of spatially
coherent extremes can be made. This resampling is akin to generating hurricane tracks [for example, Yonekura
and Hall, 2011]. The trajectory projections can be coupled with spatial extremes model [for example, Cooley
et al., 2007] to produce return level maps of extreme precipitation, and consequently hydrologic extremes,
important for resource management. Furthermore, these trajectories can be resampled to produce physically
based simulations of extreme precipitation. We can also investigate the climatic conditions in moisture source
regions that favor the production of extremes, potentially to develop statistical forecast models. Finally, given
the evidence of the land surface as a moisture source for some regions, we would like to investigate the relative
contribution of the land surface versus open water bodies as a moisture source for extreme precipitation.
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