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Abstract. A multivariate, nonparametric time series simulation method is provided to
generate random sequences of daily weather variables that “honor” the statistical
properties of the historical data of the same weather variables at the site. A vector of
weather variables (solar radiation, maximum temperature, minimum temperature, average
dew point temperature, average wind speed, and precipitation) on a day of interest is
resampled from the historical data by conditioning on the vector of the same variables
(feature vector) on the preceding day. The resampling is done from the k nearest
neighbors in state space of the feature vector using a weight function. This approach is
equivalent to a nonparametric approximation of a multivariate, lag 1 Markov process. It
does not require prior assumptions as to the form of the joint probability density function
of the variables. An application of the resampling scheme with 30 years of daily weather
data at Salt Lake City, Utah, is provided. Results are compared with those from the
application of a multivariate autoregressive model similar to that of Richardson [1981].

1. Introduction

Crop yields and hydrological processes such as runoff and
erosion are driven by weather variations. Recognizing the in-
herent variability in climate, it is often desirable to assess
management scenarios for a number of likely weather se-
quences. Stochastic models are useful for simulating scenarios
that are representative of the data. While there is a substantial
literature for rainfall simulation and for other variables one at
a time, only a few multivariate weather simulation models have
been developed.

An objective of the work presented here was to generate
daily weather sequences as inputs to the Weather Erosion
Prediction Project (WEPP) of the U.S. Department of Agri-
culture (USDA). Six variables (solar radiation (SRAD), max-
imum temperature (TMX), minimum temperature (TMN), av-
erage wind speed (WSPD), average dew point temperature
(DPT), and precipitation (P)) that are of interest to WEPP
were considered to represent the daily weather state. Gener-
ally, a statistical method for generating daily weather se-
quences needs to consider the statistical dependence or corre-
lation of the weather variables with each other on the same
day, as well as their “persistence,” i.e., dependence on the
weather state on previous days. Solar radiation, dew point
temperature, and maximum temperature are likely to be lower
on rainy days than on dry days, while the wind speed and
minimum temperature may be higher on rainy days than on dry
days. Consequently, precipitation is chosen as the driving vari-
able in a number of existing models. Typically [see Jones et al.,
1972; Nicks and Harp, 1980; Richardson, 1981; Rajagopalan et
al., 1997], daily precipitation is generated independently, and
the other variables are generated by conditioning on precipi-

tation events (i.e., whether a day is wet or dry). A precipitation
occurrence and amount model (e.g., a two-state Markov
model, with exponentially distributed rainfall amounts) is used
to generate the sequence of dry and wet days and precipitation
amount. The other variables are simulated using a lag 1 mul-
tivariate, autoregressive model with exogenous precipitation
input (MAR-1). The work of Rajagopalan et al. [1997] differed
from the earlier work. They used kernel density estimation to
specify the univariate and multivariate probability densities
needed for describing the stochastic processes of interest. Pre-
cipitation was generated independently from a nonparametric
wet/dry spell model [Lall et al., 1996], and the other variables
on a given day were generated by conditioning on the precip-
itation magnitude (rather than just the precipitation state) for
the day and on the previous day’s values for the weather variables.

The precipitation amount on a rainy day may also depend on
the wind, the temperature, and the humidity as measured by
the dew point temperature. Consequently, there is reason to
consider dependence of the daily weather process on more
than just precipitation as has traditionally been done. Young
[1994], in a model similar in spirit to the one presented here,
considers such dependence. In the approach adopted in this
paper, precipitation is simulated along with the other variables,
thereby capturing the mutual dependence of all six weather
variables. The simulation strategy used is a direct resampling
of the data using a conditional bootstrap based on nearest-
neighbor probability density estimation. This approach does
not require the specification of and estimation of the param-
eters of a parametric model (e.g., normal or lognormal) for the
joint or conditional probability density of the variables.

A brief review of traditional methods for simulating weather
variables is first provided. The general framework for the re-
sampling strategy proposed here is presented next. The
k–nearest-neighbor (k-NN) bootstrap algorithm is outlined.
An application of the method to data from Salt Lake City is
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then presented. Comparisons of the simulations from the
k-NN bootstrap and from a more traditional autoregressive
simulation model are provided.

2. Background
The general structure of some traditional methods [see Jones

et al., 1972; Bruhn et al., 1980; Nicks and Harp, 1980; Lane and
Nearing, 1989; Richardson, 1981] for simulating daily weather is
discussed in this section. Precipitation is first generated inde-
pendently, and the other variables are conditioned on the
generated state of precipitation (i.e., rain or no rain on the
day). The other variables are generated either from indepen-
dent statistical distributions fitted separately to each of the
variables for each of the two precipitation states (i.e., rain, no
rain) or from independently or jointly fitted autoregressive
models of order 1 (AR-1).

Usually, the year is divided into periods (seasons), and mo-
ments (mean, standard deviation, and skew) are calculated for
each variable for each period for each precipitation state. The
seasonal moments are used to fit probability distributions or
models. Homogeneity of the process in each season is as-
sumed. Jones et al. [1972], Bruhn et al. [1980], Nicks and Harp
[1980], and Lane and Nearing [1989] divide the year into 14-day
or 1-month periods. Richardson [1981] smoothed the means
and standard deviations of each period and each precipitation
state using Fourier series. The smoothed daily values of the
means and standard deviations are subsequently used for
deseasonalization.

Daily precipitation occurrence in these models is presumed
to follow a first-order Markov chain with the daily precipitation
amount generated from an assumed probability distribution
(such as gamma, exponential, truncated normal, etc.) fitted to
the historical daily amounts for each period. One approach to
generate the other variables is to fit distributions indepen-
dently for each variable for each period and for each precipi-
tation state, under the assumption that each variable is condi-
tionally independent and identically distributed (i.i.d.). This
approach and its variants are used by Jones et al. [1972], Bruhn
et al. [1980], and Lane and Nearing [1989]. In Lane and Near-
ing’s model CLIGEN each variable is assumed to be an inde-
pendent Gaussian variable for each month, with parameters
dependent on the precipitation state transition (e.g., wet to
wet, dry to wet, etc.). This approach does not consider the
dependence between the variables and the serial dependence
for each variable.

Nicks and Harp [1980] considered serial dependence of
weather variables. They fit autoregressive models of order 1
(AR-1) independently to each variable for each period. Rich-
ardson [1981], who used a multivariate autoregressive model of
order 1 (MAR-1), added the consideration of dependence
across variables. These models suffer from the drawback of
assuming the data to be normally distributed. As a result, only
linear dependence between variables and precipitation states
from one day to the next can be reproduced.

These approaches have four main drawbacks. First, since
precipitation is exogenously provided, lag 0 and lag 1 correla-
tions of the variables are often not properly reproduced. Sec-
ond, the choice of a probability distribution function is often
subjective and is rarely formally tested on a site-by-site basis.
Third, there is reliance on an implicit Gaussian framework
(e.g., AR or MAR) which preserves only linear dependence
and poses problems for bounded variables. Fourth, the fitted

models have limited portability in the sense that procedures/
distributions used at one site may not be best at other sites.
Transformations of variables can be used to justify the Gauss-
ian AR or MAR framework. However, it is difficult to develop
appropriate transformations in the setting considered here and
preserve the proper statistical relationships in the untrans-
formed space. All six of the variables considered here are in
some sense bounded.

Katz [1996] observes that the Richardson model (1) does not
preserve the lag 1 autocorrelation of the weather variables that
are conditioned on precipitation amount, (2) underestimates
the observed variance of monthly values of the weather vari-
ables, and (3) because of its conditional form (conditioning on
precipitation state), leads to effects unanticipated by the user,
as model parameters are varied. He notes that these problems
are endemic to this class of models and provides ways by which
the unconditional distributions of the weather variables in such
a model can be derived and examined. The model of Rajago-
palan et al. [1997] circumvents some of these problems; since
the nonparametric density estimation does not require the
transformation of the variables, wet and dry spell statistics are
explicitly preserved, and nonlinear relations between the vari-
ables are approximated. However, it does not address the
problems introduced by having an exogenous precipitation
simulator. The kernel density estimation procedures also do
not adapt the degree of density smoothing to the state space as
well as the k-NN density estimates employed here.

A multivariate chain model for simulating daily minimum
and maximum temperatures and precipitation was presented
by Young [1994]. This model is similar to the model presented
here in that a k-NN strategy is employed to select a day at
random from the historical data set as a simulation for the
three variables for the next day. Young uses multiple discrimi-
nant analysis to identify patterns in the three-dimensional data.
The k nearest neighbors of the current day in terms of these
patterns are identified, one of them is randomly selected, and
its “next” day’s values are adopted as the simulation for the
current day’s successor. Seasonal variations are not considered,
and the number of nearest neighbors is selected by comparing
the autocorrelograms of the simulated variables with those of
the corresponding historical variables. The number of nearest
neighbors selected (three to five) by this criterion is quite
small. Young demonstrates the superiority of the approach
over a first-order Markov chain model for the three variables
in terms of a variety of statistics. His model preserves most
notably the cross correlation between temperature and precip-
itation and the wet/dry spell statistics. He also notes some
biases (e.g., reduced persistence and underestimation of the
fraction of dry months) in the sequences simulated by his
method. The work presented here is philosophically similar to
the model of Young, but it differs in operational details. A
connection to the Markov process, nonparametric density es-
timation, and nonlinear dynamical systems literature is also
provided.

All the techniques discussed in this section focused on
“short-range” statistical properties. It is known that such mod-
els will not likely reproduce the variance and related statistical
attributes at longer aggregation periods (e.g., the interannual
variance and dependence of seasonal precipitation). The
model presented in this paper does not explicitly address this
concern either.

Figures 1 and 2 show the pairwise scatterplot of the six
variables for wet and dry days, respectively, for season 1 (Janu-
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ary–March) of the 1961–1991 data from Salt Lake City. The
line in each scatterplot is a locally weighted scatterplot smooth
(LOWESS: a moving-window–weighted local regression from
Cleveland [1979]). We observe that the pairwise relationships
between the variables can (1) be nonlinear and (2) differ for
wet and dry days. There is also evidence (bottom row of Figure
1) for the dependence of the precipitation amount on some of
the other variables (notably dew point temperature). This in-
dicates that a strategy that directly includes precipitation in the
set to be simulated may be better than one in which precipi-
tation is generated exogenously to the other variables. Het-
eroskedasticity (nonconstant variance of errors from the
smooth in each frame) is also observed. Transforms of indi-
vidual variables are often used to develop cross-dependence
relations that are approximately linear with relatively uniform
scatter about the regression line. Given the varying “curvature”
of the mean response and scatter in the pairwise relationships,
it is not obvious that a useful set of univariate transformations
that can address the multivariate dependence is feasible. The
likely utility of a scheme that recognizes these factors and
approximates the behavior locally in some sense is obvious.

3. Multivariate Markov Model and Bootstrap
Let us denote the time series of length n of the daily values

of the six variables by xt, t 5 1, z z z , n . For now, assume that
seasonality has been taken care of in some fashion and we are

interested in resampling daily values xt, focusing only on de-
pendence on m past values, i.e., xt21, xt22, z z z , xt2m. The
process xt is thus considered to be a m-dependent multivariate
Markov process. Synthetic sequences from such a model can
be simulated if we specify the conditional distribution function
F(xtuxt21, xt22, z z z , xt2m). The models discussed in section
2 belong to this general framework, with m 5 1 and with the
conditional distribution function F(xtuxt21) described using
parametric functions (Gaussian distributions for all variables
except precipitation). The primary difference in this paper is
that we implicitly use a nonparametric density estimate to
resample from F(xtuxt21).

The bootstrap [Efron, 1979] is a technique that prescribes a
data-resampling strategy using the random mechanism that
generated the data. Its applications for estimating confidence
intervals and parameter uncertainty are well known [see Härdle
and Bowman, 1988; Tasker, 1987; Woo, 1989; Zucchini and
Adamson, 1989]. Usually, the bootstrap resamples with re-
placement from the empirical distribution function Fn(x) of
independent, identically distributed data, xi, i 5 1, z z z , n .
This is equivalent to resampling the observations xi with a
probability of 1/n . An algorithm for bootstrapping time series
considering Markovian dependence was developed by Lall and
Sharma [1996], who applied it to univariate, monthly stream-
flow data. This algorithm was motivated by nonparametric
approaches to time series analysis using nearest-neighbor den-

Figure 1. Pairwise scatterplot of SRAD, TMX, TMN, WSPD, DPT, and P for wet days, for season 1 at Salt
Lake City. The lines in each section are the locally weighted scatterplot smoother (LOWESS) smooths.

3091RAJAGOPALAN AND LALL: A k–NEAREST-NEIGHBOR SIMULATOR



sity and regression estimators of Yakowitz [1973, 1979, 1985,
1993]. We shall briefly motivate this algorithm in the context of
the present work.

The Markov chain model for precipitation occurrence usu-
ally considers two states (wet and dry) and transition proba-
bilities pij for transitions from state i to state j in the next time
period. This is a nonparametric model, with an intuitively ap-
pealing structure. It has been noted [Lall et al., 1996; Rajago-
palan et al., 1996] that it may be desirable to have more than
two states in such models to recognize the role of precipitation
magnitude. Increasing the number of states can provide a bet-
ter stepwise approximation to the conditional distribution
function F(PtuPt21) of the associated Markov process for
rainfall.

One can extend this thinking to the other five variables as
well. Let us say that we partition each of these variables into p
states and consider a Markov chain model for all the variables.
For the multivariate problem in six variables, there are a total
of p6 states at each time step. Thus even for the rather coarse
description of the process for p 5 2 one needs to compute
transition probabilities from 64 states to 64 states at the next
time step. Clearly, the sample sizes needed to reliably estimate
transition probabilities under this framework would be very
large. As the number of states considered increases, the situ-
ation becomes rapidly intractable ( p 5 5 yields 15,625 states,
and p 5 10 gives 106 states). This is the well-known curse of
dimensionality. Conceptually, we shall retain the nonparamet-

ric flavor of the Markov chain approach, but we shall strive to
approximate the conditional distribution function F(xtuxt21)
in a more adaptive manner using nearest-neighbor density
estimators.

We motivate this idea through Figure 3, where we show a
plot between successive values for a synthetic, univariate time
series. Note that while the correlation between xt and xt21 is
zero, xt depends directly on xt21, with no random terms. Four
states equally spaced between 0 and 1 for a Markov chain
representation are considered. Consider resampling an xt,
given that xt21 corresponds to the whisker in the window
marked as A. If we had observed this value of xt21 several
times, we could directly apply the bootstrap and resample
directly from the successors (i.e., xt values corresponding to
each such occurrence) to these observations. Since we do not
have such information, assuming that the conditional distribu-
tion function F(xtuxt21) is smooth (i.e., differentiable with
bounded derivatives) in a neighborhood of the point of inter-
est, we can “borrow” the successors of neighboring values of
xt21 for the purpose. The windows A and B were based on 10
neighbors of the marked point. We can see that these moving
windows are quite effective in capturing the local attributes of
the transitions from xt21 to xt. For the situation corresponding
to window A, if we had used the four-state Markov chain
model, all we would know is that 0.75 , xt , 1 with probability
1 for all values in the range 0.25 , xt21 , 0.5. Asymptotically,
i.e., as the sample size tends to infinity, the size of the neigh-

Figure 2. Pairwise scatterplot of SRAD, TMX, TMN, WSPD, and DPT for dry days for season 1 at Salt
Lake City. The lines in each section are the LOWESS smooths.
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borhood dictated by a given number of neighbors k will shrink,
and the approximation of the underlying conditional distribu-
tion function will improve.

In the multivariate setting, neighbors of the conditioning
point correspond to data patterns that are similar to the pat-
tern at the conditioning point. For a day with no rain, that is
warm, with little wind, and no humidity, neighbors established
by calculating the vector distance between the observations will
be similar days. The values for the weather variables for the
next day will be sampled as a vector from a historically similar
day. Clearly, there is some utility to giving a higher probability
to a day that is more similar to the conditioning day than the
other “neighbors.” Using a weight function that decays
smoothly with distance can reduce the sensitivity to the num-
ber of nearest neighbors used for resampling. A weight func-
tion applied to the nearest neighbors that is natural in a certain
sense and the choice of the number of nearest neighbors to use
are discussed in some detail by Lall and Sharma [1996].

4. The k-NN Resampling Algorithm
The k-NN conditional resampling scheme is described in

this section. All six daily weather variables (including precipi-
tation) are considered simultaneously as members of a daily
weather vector. Denote the vector time series of weather vari-
ables by xt, t 5 1, z z z , n , and assume for now that we have
decided on a dependence structure, i.e., which and how many
lags the future values will depend on and the number of near-
est neighbors k to use. We shall call this conditioning set a
“feature vector” and the simulated or forecasted vector the
“successor.” The strategy is to find the historical nearest neigh-
bors of the current feature vector and to resample from their

successors. Rather than resampling uniformly from the k suc-
cessors, we use a discrete resampling kernel that is monoton-
ically decreasing, is data adaptive, adapts automatically to the
dimension of the feature vector and to boundaries of the sam-
ple space, and has an attractive probabilistic interpretation
consistent with the nearest-neighbor method. Also presume
for now that the data have been deseasonalized or that a
treatment for seasonality is available that does not affect the
algorithm presented in section 4.1. We deseasonalize the time
series of each of the variables by removing the calendar day’s
mean and dividing by the calendar day’s standard deviation
computed over the historical record. The xt referred to are
deseasonalized variates. The final results presented are ob-
tained by multiplying the daily values generated by the stan-
dard deviation for that date and by adding the mean for that
date.

We now present an annotated algorithm for resampling
weather variables adopted here that considers day-to-day de-
pendence between the variables. This algorithm is applied for
a given season (e.g., 3 months, 1 month) and is initialized by
the xt values for the last day of the previous season.

4.1. Flow Chart for Resampling

The key steps in the algorithm are (1) identifying a current
conditioning vector of the six weather variables, (2) determin-
ing its k nearest neighbors in state space, (3) identifying, for
each of these k nearest neighbors, a successor vector compris-
ing the next day’s values for the six variables, (4) resampling
one of these vectors to represent the next day’s weather using
a kernel or weight function, and (5) repeating this process.

1. Define the composition of the feature vector Dt of di-
mension d .

D t;x t21

Here we have chosen to use the vector of the (six) deseason-
alized variables of interest on the previous day as the feature
vector. One could add, if desired, other information, such as
the value of an atmospheric flow index (e.g., the Southern
Oscillation Index) on the same day or averaged over the past
month and/or additional lags (e.g., Dt;[xt21, xt21, z z z , xt2L]
where L is the number of terms in the model). Katz and
Parlange [1995] fit stochastic models for daily precipitation
conditional on a monthly index of large-scale atmospheric cir-
culation.

2. Denote the current feature vector as Di and determine
its k nearest neighbors among the historical state vectors Dm

using the weighted Euclidean distance

r im 5 ÎF O
j51

d

wj~v ij 2 vmj!
2G (1)

where v( ) j is the jth component of D( ) and the wj are weights.
Here we chose the weights wj as “scaling” weights (e.g., 1/sj),
where sj is some measure of scale such as the standard devia-
tion or range of v j. The weighted euclidean distance may also
be computed as (rim

2 5 (vi 2 vm)T ¥21 (vi 2 vm)), where ¥

is the covariance matrix of D and vi and vm represent the
values of D at points i and m . The weights wj may thus be
specified a priori, as is done here, or they may be chosen to
provide the best forecast for a particular successor in a least
squares sense [see Yakowitz and Karlsson, 1987]. The latter
would be the desirable method, but it adds substantially to the

Figure 3. A plot of xt11 versus xt for the time series gener-
ated from the model xt11 5 [1 2 4(xt 2 0.5)2]. The state
space for x is discretized into four states as shown. Also shown
are windows A and B with whiskers located over selected
values of xt. These windows represent a k nearest neighbor-
hood of the corresponding xt. In general, these windows will
not be symmetric about the xt of interest, and their width varies
depending on the relative sampling density of xt. Note how one
can think of state transition probabilities using these windows
in much the same way as with the multistate Markov chain.
However, the nearest-neighbor windows point directly to the
region in which transitions are possible. A value of xt11 con-
ditional to point A or B can be bootstrapped by appropriately
sampling and replacing one of the values of xt11 that falls in
the corresponding window. (From Lall and Sharma [1996].)
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computational burden. Multiple discriminant analysis as used
by Young [1994] would be another choice for neighbor identi-
fication.

3. Denote the ordered set of nearest-neighbor indices by
Ji ,k. An element j(i) of this set records the time t associated
with the jth closest Dm to Di. Denote xi , j

s as the successor to
Dj(i). If the data are highly quantized, it is possible that a
number of observations may be the same distance from the
conditioning point. The resampling kernel defined in step 4 is
based on the order of elements in Ji ,k. Where a number of
observations are the same distance away, the original ordering
of the data can impact the ordering in Ji ,k. To avoid such
artifacts, we copy the time indices t into a temporary array that
is randomly permuted prior to distance calculations and cre-
ation of the list Ji ,k.

4. Define a discrete kernel K[ j(i)] for resampling one of
the xi , j

s as follows:

K@ j~i!# 5
1/j

O
j51

k

1/j

(2)

where K[ j(i)] is the probability with which xi , j
s is resampled.

Note that this resampling kernel is the same for any i and can
be computed and stored prior to the start of the simulation.
Lall and Sharma [1996] develop this kernel through a local
Poisson approximation of the probability density function of
state space neighbors.

5. Using the discrete probability mass function K[ j(i)],
resample a xi , j

s , update the current feature vector, and proceed
to step 2 if additional simulated values are needed.

4.2. Choosing the Number of Neighbors k and Model
Order L

The user-selectable parameters of the k-NN daily weather
simulator are the number of nearest neighbors k used for
conditioning and the number of terms L in the model. One
could also use other conditioning variables (e.g., climate state).
Traditional time series simulation models often use criteria
that evaluate the mean square forecast error (corrected for the
degrees of freedom of the model) to choose model parameters.
Lall and Sharma [1996] suggest the use of the generalized cross
validation (GCV) score function to choose k and the number
of lags L for the Markov model (set to 1 in the applications
reported here). This is similar to the use of the Akaike infor-
mation criteria (AIC) in the traditional autoregressive moving
average (ARMA) framework. In our context the GCV score
function is given as

GCV 5

O
i51

n1

e i
TWe i

n1H 1 2 F 1Y O
j51

k

~1/j!G J 2 (3)

where n1 is the total number of forecasts possible (n 2 L
here) with sample size n , W is a weight matrix, and ei is the
error vector of the ith vector xi, defined as

e i 5 x i 2 x i
f (4)

x i
f 5 O

j51

k 1/j

O
m51

k

1/m

x i, j
s (5)

where xi is a recorded value that is to be forecast from L prior
lags (xi21, xi22, z z z , xi2L), xi , j

s is the successor vector cor-
responding to the jth nearest neighbor of the feature vector on
which we are conditioning to resample a vector corresponding
to xi, and xi

f is the k-NN “forecast” vector corresponding to xi.
The GCV score above is a measure of the expected predic-

tive mean square error for the k-NN forecasts of the six vari-
ables of interest on a given day. The forecasts are formed as
the weighted average of the successors of the k nearest neigh-
bors of the feature vector. The weight matrix W can be spec-
ified a priori to recognize the relative importance the user
wishes to assign to each of the six variables. One choice of the
weight matrix is a diagonal matrix with the scaling weights (i.e.,
wjj 5 1/sj, other wij 5 0). The number of nearest neighbors
k to use and the order L of the model can be chosen as the
values that minimize the GCV score over the data.

For parametric models a maximum likelihood or method of
moments estimation of the parameters “ensures” that the rel-
ative frequency distribution of the data and the simulated
sequences will match. The selection of the model parameter-
ization using GCV- or AIC-like criteria is appropriate if the
model errors are normally distributed and the conditional
mean of the state variables is of primary interest. Departures
between the frequency distributions of the historical data and
the simulated sequences are presumed to be due to model
misspecification. They may be addressed by reexamining the
probability distribution models and/or the model order used.
In the nonparametric framework employed here, different val-
ues of k will lead to a different bias or variance associated with
the approximation of the underlying frequency distributions,
and changing the model order will affect the persistence sta-
tistics. Thus one should be able to control how well the fre-
quency distributions of state variables generated match those
of the historical data through an appropriate choice of k . In
this regard, a GCV-based choice of k and L may be subopti-
mal, since it only considers the performance of the model with
respect to the conditional mean and variance. In practice, the
user may wish to experiment with the choice of k around the
value selected by GCV to “tune” the sequences generated so
that a broad range of statistics is matched. Young [1994] based
his choice on the match between the autocorrelation function
of simulated and historical variables.

With regard to the model order L it is interesting to note
that for dynamical systems, Takens embedding theorem sug-
gests that a Markov model with a d-dimensional state space
can be shown to be equivalent to a univariate Markov model of
order (d 1 1) in terms of any one of the variables. The reader
is referred to Sangoyomi et al. [1996] and Abarbanel and Lall
[1996] for a discussion of this point. Thus, even with a lag 1
model, with the six state variables assumed to be interdepen-
dent, one may be able to reproduce persistence in precipitation
and other variables without recourse to additional lags.

Here we considered only a lag 1 model and for computa-
tional ease used a prescriptive choice for k of =n. Asymptotic
arguments [Fukunaga, 1990] suggest that k should be chosen
so as to be proportional to n4/(d14), where d is the dimension
of the vector for which the nearest-neighbor density is to be
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estimated, with the constant of proportionality dependent on
the underlying density. For the sample sizes under consider-
ation here the choice of =n was found to give good results for
the simulated statistics of x.

5. Model Application and Performance
Measures

The k-NN simulator was applied to daily weather data from
Salt Lake City, Utah. Thirty years of daily weather data were
available from the period 1961–1991. Salt Lake City is at
408469N latitude, 1118589W longitude and at an elevation of
1288 m. Most of the precipitation comes in the form of winter
snow. Rainfall occurs mainly in spring, with some in fall.

The data for each of the six variables were first deseasonal-
ized by subtracting the mean for the calendar day and dividing
by the standard deviation of the variable for the calendar day.
Recognizing that the dynamics of the weather system may have
seasonal variation beyond that represented in the mean and
variance, the simulator was applied on seasonally segregated
data. Fixed or moving window seasons can be employed. Fixed
seasons were used in the applications presented here to facil-
itate comparisons with the MAR models, which are usually
used with fixed seasons. The year is divided into four periods or
seasons (season 1 (January–March), season 2 (April–June),
season 3 (July–September), and season 4 (October–Decem-
ber)). Simulations for days in any particular period are made
using the historical data of that season. Comparisons of statis-
tics are then made for each season. We have also used a
moving window of some width (e.g., 90 days), centered on the
calendar day of interest, rather than a fixed season demarca-
tion. Comparable results are obtained by using such a moving
window rather than fixed seasons. We shall outline first the
experiment design and then some measures of performance
used to judge the utility of the model.

5.1. Experiment Design

The algorithm described in section 4.1 is applied to the Salt
Lake City data, and selected statistics of the simulated traces
are compared with those from a MAR-1 model. The main
steps are as follows: (1) The daily weather variables are gen-
erated following the simulation algorithm described in section
4. (2) Twenty-five synthetic records of 30 years each (i.e., the
historical record length) are simulated using the k-NN model.
(3) The statistics of interest described in section 5.2 are com-
puted for each simulated record for each season and compared
to statistics of the historical record using box plots.

5.2. Performance Measures

The following statistics were considered to be of interest in
comparing the historical record and the simulated record of
weather variables. None of these statistics is explicitly specified
in fitting the k-NN model. Consequently, their successful re-
production can be considered a sign of success for the method.
All computed statistics are for daily values of each variable and
refer to each season. Moments are mean, standard deviation,
skew, and coefficient of variation. Relative frequencies are
25th and 75th quantiles of the 30-year record and in some cases
the largest or smallest values in a 30-year record. Dependence
is pairwise lag 0 and lag 1 cross correlation across all variables.

6. Results
The statistics of interest calculated from the simulations are

compared with those for the historical record using box plots.

A box in the box plots (e.g., Figure 4) indicates the interquar-
tile range of the statistic computed from 25 simulations, and
the line in the middle of the box indicates the median simu-
lated value. The solid lines correspond to the statistic of the
historical record. The box plots show the range of variation in
the statistics from the simulations and also show the capability
of the simulations to reproduce historical statistics. Only se-
lected results are shown here to save space. (The detailed
results are available from the authors or on the Web from the
Utah Water Research Laboratory, Utah State University at
http://pub.uwrl.usu.edu/;ulall/knnweather.) In summary, the
moments and relative frequency measures of SRAD, TMX,
TMN, WSPD, DPT, and P are reproduced by the k-NN sim-
ulations with reasonable variety and without bias using the
default choice of k .

Illustrative statistics of wet and dry spell lengths simulated
are shown in Figures 4 and 5. Figure 4 provides the box plots
of average wet spell length, standard deviation of wet spell
length, fraction of wet days, and length of longest wet spell
length for each season. Figure 5 shows the box plots of these
statistics for the dry spell length. The box plots in Figures 4 and
5 show that the historical wet and dry spell statistics are well
reproduced by the simulations even though they were not ex-
plicitly modeled. Note in Figure 5 that spells longer than those
in the historical record can be generated by the k-NN resam-
pling procedure applied at a daily time step.

Figures 6 and 7 show the box plots of the lag 0 cross corre-
lation and lag 1 cross correlation between the variables, re-
spectively. Figure 8 shows the lag 1 autocorrelation of each of
the variables for all four seasons. As can be seen from Figures
6–8, the historical correlations are reproduced well by the
simulations in all four seasons.

We compared the k-NN resampling approach with a slightly
modified version of the MAR-1 model developed by Richard-
son [1981] that was discussed in section 2. Instead of adopting
the Markov chain for generating the daily precipitation we use
a nonparametric wet/dry spell model as developed by Lall et al.
[1996] to generate the daily precipitation (both state and
amount). Instead of the Fourier series smoothing of the 14-day
period means and standard deviations of each variable, we
calculate the wet and dry day means and standard deviations of
each variable for each calendar day and use a discrete non-
parametric smoother [see Rajagopalan and Lall, 1995] to
smooth these variables. The time series of each of the variables
is then reduced to residual elements by subtracting appropriate
means and dividing by the appropriate standard deviations. By
appropriate we mean the wet day or dry day means and stan-
dard deviations, depending upon the precipitation state. The
residual elements are assumed to be serially uncorrelated and
normally distributed. MAR-1 is then fit to these residuals as
per procedures detailed by Salas et al. [1980]. A precipitation
sequence is first generated from the nonparametric wet/dry
spell model. A vector of residuals of the weather variables is
simulated from the MAR-1 model fitted for the season. De-
pending on precipitation state of the day, the residuals are
multiplied by the appropriate standard deviation and added to
the appropriate mean to recover daily weather variable values.

The wet/dry spell precipitation model reproduced the statis-
tics of precipitation amount and spell length as shown by Lall
et al. [1996]. The mean values of SRAD, TMX, TMN, WSPD,
and DPT were reproduced by the MAR model. However, the
variance, skew, and quantiles were often biased (sometimes
significantly) in the MAR simulations. This is due in part to the
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Figure 4. Box plots of statistics of wet spell length: (a) mean wet spell length, (b) standard deviation of wet
spell length, (c) fraction of wet days, and (d) longest wet spell length from k-NN simulations along with the
historical values for the four seasons. Roman numerals indicate the four seasons.

Figure 5. Box plots of statistics of dry spell length: (a) mean dry spell length, (b) standard deviation of dry
spell length, (c) fraction of dry days, and (d) longest dry spell length from k-NN simulations along with the
historical values for the four seasons.
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Figure 6. Box plots of lag 0 cross correlation between (a) SRAD and TMX, (b) SRAD and TMN, (c) SRAD
and DPT, (d) TMX and TMN, (e) TMX and DPT, (f) TMX and P , (g) TMN and DPT, (h) TMN and P , and
(i) DPT and P from k-NN simulations along with the historical values for the four seasons.

Figure 7. Box plots of lag 1 cross correlation between (a) SRAD and TMX, (b) SRAD and TMN, (c) SRAD
and DPT, (d) TMX and TMN, (e) TMX and DPT, and (f) TMN and DPT from k-NN simulations along with
the historical values for the four seasons.



behavior of the two stage models noted by Katz [1996] and in
part due to the fact that the marginals were not transformed to
Gaussian prior to simulation. To save space, the MAR results
for these simulations are not presented since the main focus of
our comparison across these models is the manner in which
correlations are preserved.

Figures 9, 10, and 11 show the box plots of lag 0 cross
correlation, lag 1 cross correlation, and lag 1 autocorrelation of
the variables. A comparison of Figures 9–11 with the corre-
sponding figures for the k-NN simulation (Figures 6–8) re-
veals the superiority of the k-NN simulator in preserving the
cross-dependence and serial dependence terms. This observa-
tion, coupled with the better reproduction of the basic univar-
iate statistics, and the relative simplicity of the algorithm sug-
gest its utility for generating multivariate, daily weather
sequences.

While the k-NN weather simulator was designed to repro-
duce only daily or short-term statistics, the statistics of seasonal
totals appear to be reproduced effectively as well for the Salt
Lake City data, as shown in Figure 12. The mean and variance
of the annual total precipitation were also preserved (not
shown here) with a slight downward bias in the variance. This
indicates the potential capability of the k-NN simulator to
capture interannual statistics and, consequently, low-frequency
climate variability.

7. Summary and Conclusions
A multivariate k-NN resampling scheme with lag 1 depen-

dence was illustrated for six daily weather variables. Its ability
to successfully reproduce sample statistics was demonstrated.

We see that the properties of the precipitation spell structure
and amount are also preserved. The need for separate precip-
itation and weather models is thus obviated. We feel that this
approach recognizes the mutual dependence between the six
weather variables better than past approaches.

A Markovian interpretation of the k-NN model described
here is apparent upon thinking about the manner in which the
one-step transition process works. The value to be simulated at
the next time step can be thought of as a transition to any of
the states within a neighborhood of the state of the current
time. The conditional probability density function (pdf) can be
viewed as an approximation to the transition probabilities.
Thus the k-NN model implemented here can be seen as a
one-step Markov model with the transitions estimated non-
parametrically. With a few exceptions [Young, 1994] the model
presented here represents a philosophical as well as practical
departure from the methods used for daily weather simulation.

The k-NN approach presented improves on the kernel-
based nonparametric simulation approach developed by
Rajagopalan et al. [1997]. In that model, precipitation was
generated exogenously using a nonparametric wet/dry spell
model, and the other variables were conditioned on precipita-
tion on the day and on the other variables on the prior day. The
11-dimensional (six variables on the current day and five vari-
ables on the preceding day) joint probability density needed for
simulation was estimated using a multivariate Gaussian kernel
function and was used with a bandwidth chosen appropriate
for estimating a multivariate Gaussian density. The simulations
from that model failed to adequately reproduce the lag 0 and
lag 1 correlations between the variables, especially with pre-

Figure 8. Box plots of lag 1 autocorrelation of SRAD, TMX, TMN, WSPD, and DPT for (a) season 1, (b)
season 2, (c) season 3, and (d) season 4 from k-NN simulations along with the historical values.
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Figure 9. Box plots of lag 0 cross correlation between (a) SRAD and TMX, (b) SRAD and TMN, (c) SRAD
and DPT, (d) TMX and TMN, (e) TMX and DPT, (f) TMX and P , (g) TMN and DPT, (h) TMN and P , and
(i) DPT and P , from MAR-1 simulations along with the historical values for the four seasons.

Figure 10. Box plots of lag 1 cross correlation between (a) SRAD and TMX, (b) SRAD and TMN, (c)
SRAD and DPT, (d) TMX and TMN, (e) TMX and DPT, and (f) TMN and DPT, from MAR-1 simulations
along with the historical values for the four seasons.



cipitation. This is to be expected since precipitation is supplied
exogenously to the model, unlike in the k-NN approach used
here. We had the same experience with a MAR-1 model that
was applied in the same manner. The kernel-density–based
resampler was also biased near the boundaries of the domain
and allowed the generation of values that were outside the
variable bounds. While these problems can potentially be rec-
tified at the expense of additional variance in the simulations,
the k-NN resampler does not suffer from them. The “band-
width” of the k-NN resampler automatically adapts to the local
density of points, being larger where the data are sparse and
smaller where the data are dense. This is an advantage over the
kernel-density–based approach, where a fixed bandwidth is
used and the number of points used for each local resample

can vary drastically (from zero to a large fraction of the sam-
ple). The fixed bandwidth methods typically do poorly in the
tails, where data are sparse, and also near the modes of the
density, where the modes may be smoothed out. Finally, the
k-NN approach presented here is computationally faster than
the kernel-density–based approach given by Rajagopalan et al.
[1997], where the parameters were also chosen in an ad hoc
manner.

The comparisons with the MAR-1 model presented here are
arguably unfair to the MAR model since the variables in MAR
were not transformed to be approximately normal prior to
simulation. However, we have made other comparisons with
the CLIGEN model of Nicks et al. [1995], which does trans-
form precipitation and wind speed to be normal using a trans-

Figure 11. Box plots of lag 1 autocorrelation of SRAD, TMX, TMN, WSPD, and DPT for (a) season 1, (b)
season 2, (c) season 3, and (d) season 4, from MAR-1 simulations along with the historical values.

Figure 12. Box plots of (a) means of total seasonal precipitation and (b) variance of total seasonal precip-
itation for the four seasons along with the historical values.
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formation from gamma to a normal distribution. Our conclu-
sions are unchanged with respect to those comparisons. As was
indicated in the section 2, working with transformed data in a
multivariate setting is somewhat tenuous if unbiased real space
statistics are of interest. The main point of our comparisons is
that the k-NN approach is better at preserving the cross-
dependence and frequency structure than earlier models that
generate precipitation separately from other variables. This is
useful, for instance, in getting the right attributes of snow
versus rain and for erosion or crop modeling, where getting the
right combination of meteorological variables makes a differ-
ence in the outcomes of interest.

Since it is a bootstrap, the simulations from the k-NN
method do not produce values that have not been observed in
the historical data. This is a major limitation if extreme values
outside the available record are of interest. One can readily
devise a strategy that allows nearest-neighbor resampling with
perturbation of the historical data in the spirit of the tradi-
tional autoregressive models, i.e., conditional expectation with
an added random innovation. First, one evaluates the condi-
tional forecast xi , j

s as shown in (5). Then one proceeds through
the simulation by estimating the nearest-neighbor regression
forecast relative to a conditioning vector Di and then adding to
this one of the ej corresponding to a data point j that lies in the
k–nearest-neighborhood Ji ,k. An innovation ej is then chosen
using the resampling kernel K[ j(i)] in the same manner as the
successor xj(i) was chosen in section 4.1. This scheme will
perturb the historical data points in the series, with innovations
that are representative of the neighborhood, and will thus “fill
in” between the historical data values, as well as extrapolating
beyond the sample. The computational burden is increased,
and there is a possibility that the bounds on the variables will
be violated during simulation. However, there may be situa-
tions where the investigator may wish to adopt this strategy.
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