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Abstract

A Muskingum flood routing model coupled with an impulse response rainfall-runoff model
for ungauged lateral inflows is presented. The model is designed to estimate the runoft hydro-
graph at a downstream point given runoff hydrographs at one or more upstream locations, and
estimated rainfall hyetographs for ungauged catchments. A constrained, non-linear (successive
quadratic) programming algorithm is used to estimate the parameters of this model from
historical data. These parameters include the Muskingum K and x, the attenuation coefficient
and the flow velocity of the impulse response function for the ungauged catchment. Tests of the
model with synthetic situations and with a data set for the Godavari river reach in India are
presented.

1. Introduction

A classical operational hydrologic problem is the estimation of runoff from a
drainage consequent to rainfall and the routing of runoff downstream through a
channel. Lateral inflow hydrographs into the main channel of interest can be
estimated and added in dynamically as the routing proceeds. The Muskingum
method continues to be popular for flood routing. Its parameters K (‘travel time’)
and x (‘discharge weighting factor’) are usually estimated from historical data using a
simple graphical or a least-squares procedure (see Singh 1992, p. 680) or linear
programming methods (Gill, 1978; Stephenson, 1979). Linear impulse response
models (Harpin and Cluckie, 1981) have been proposed for modelling ungauged
runoff response to rainfall. Here we present a Muskingum flood routing model
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with multiple reaches coupled with an impulse response rainfall-runoff model for
ungauged lateral inflows. The model is intended to estimate the runoff hydrograph at
a downstream point given runoff hydrographs at one or more upstream locations, and
estimated rainfall hyetographs for ungauged tributaries. A constrained, non-linear
programming algorithm is used to estimate the parameters of the model.

The routing model is formally introduced through a schematic in the next section.
The optimization problem for parameter estimation is then formulated. Tests with
selected synthetic and real data sets that show the utility of the model conclude the
presentation.

2. The streamflow model

The model is introduced through the hypothetical drainage system shown in Fig. 1.
In this figure, we have two river reaches AC and CB. A and B are the upstream (u/s)
and downstream (d/s) gauging sites where historic data on discharge are available.
Subbasin ¢ is a local ungauged catchment. Runoff from ¢ is estimated using an
impulse response rainfall-runoff model. The inflow (/, A) from the upstream site
A (see Fig. 1) is routed to the location C, where it is combined with the estimated
lateral inflows (U,,) from the ungauged catchment ¢ and is then routed (O, ) to the
downstream site B.

The Muskingum method for flood routing uses storage and continuity equations
which are stated, respectively, as

Sy = Kl + (1 — x,,)0,,] (1)
and
ds,
_—_m_ 5 _
d[ m 0"1 (2)

where m is a reach index, S, is the reach channel storage, I,, and O,, are the reach
inflow and outflow, respectively, and K,,, and x,, are the Muskingum parameters. Eqs.
(1) and (2) when expressed in finite difference form and solved for the outflow at time

ungauged catchment 'c’

-

A C B

Fig. 1. Hypothetical river reach with an ungauged catchment.
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step 1 + 1 yield

01+l. m = CI. mIIH‘ m + C2, mIL m + C3, mOI. m (3)

where C . C5, ,, and (3, are expressed in terms of K,, and x,, and At =1, — 1

ps

the routing time step as

A1 -2K,x,
S 2Km(1 - xm) + At

G “

Al + 2Km '\"ﬂl

= - (5)
2Km(1 - “‘m) + At

CZ‘ m

2K, (1 — x,,) — At
— m m 6
©om 2K, (1 = x,) + At ©

The parameters K, and x,, are usually estimated using a graphical or least-squares
procedure (Singh, 1992). Stephenson (1979) and Gill (1978) use linear programming
techniques. These methods can work well in the absence of lateral inflows or when such
flows are small. Extensions to consider ungauged lateral inflows are usually indicated.

The impulse response function approach suggested by Harpin and Cluckie (1981) is
used to estimate the lateral inflows from any ungauged catchment ¢

U“‘ = FAC( Z 11[/<-P(:1_]‘;)(- + BO( (7)

j=1

where U, is the lateral inflow into the river at cross-section C at any time point 7, P, is
the rainfall over the ungauged catchment, FAC, is a runoff coefficient (between 0 and
1) that accounts for abstractions and is used to estimate the rainfall excess from the
storm rainfall and B, is the baseflow addition. Chow et al. (1989) (p. 139) mention
that, due to the highly variable rainfall intensity, the runoff coefficient is difficult to
determine from the observed data. Consequently we chose to determine FAC, by the
optimization as well.

It is generally known that FAC, varies during a rainfall event, depending on
rainfall intensity and duration. It can increase from near zero to above 0.5, as the
storm event progresses. The FAC, used here can be thought of as an average over the
event and it is used to get an appropriate total runoff volume. A time-varying FAC,
could be accommodated if the investigator were willing to make additional assump-
tions regarding the time behaviour of FAC,, e.g. one could parametrize it with a
parametric function monotonically increasing with time, with an asymptote for large
time and 0 for small time.

The variable #,, is an impulse response function that gives the characteristic response
of the basin to unit precipitation excess. It is given by Harpin and Cluckie (1981) as

(CVF B L(')2
A(ATK, )1 ”d’ ®

1
A J I L.
¢ = | TPy —
; lZ;/w(ATK(,)I"” P
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where L. is the length of the stream in the ungauged catchment (km), CV, is the
velocity of the flow (m s™') and ATK., is the attenuation parameter. The extended
trapezoidal rule (Section 4.1 in Press et al. (1989)) is used to evaluate the integral in
Eq. (8) at each time point.

Any other model that allows computation of unit hydrograph for an ungauged
basin with typically available information (e.g. rainfall over the ungauged basin, area
of the basin, etc.) could be used. The approach used here is conceptually consistent
with the level of complexity considered in the Muskingum routing. Harpin and
Cluckie argue that this approach is likely to provide the longest forecast lead time,
since the delay before runoff in the ungauged section may be of similar magnitude to
the travel time of the main flood wave.

For our example, we have one ungauged catchment, and two subreaches (i.e. ¢ = 1
and m = 1, 2). The estimated outflow at the downstream gauge is then determined by
following the recursion given in Eq. (3), to the downstream gauge where

II. m = OAIA m-1+ Ulc (9)

We use non-linear optimization for estimating the Muskingum routing parameters
K,, and x,,, impulse response parameters ATK . and CV,, the runoff coefficients FAC,
and the uniform baseflow variables B,,.

3. Parameter estimation

The parameter estimation problem can be formulated as a non-linear optimization
problem with the objective function to be minimized as

5

Z = Z(él g— O, ) (10)
t=1

where OA,‘ g and O,  are the estimated and observed outflows at the downstream
gauge B. O, p is estimated as described in the previous section. Note that O, p is a
non-linear function of the parameters defined through Egs. (3)—(9).

Z is minimized subject to the following constraints.

(1) A bound on the fractional error in pointwise outflow

—EIS(I—OA,_ B/Ol. B)gf,, 131,...,71 (1])

This constraint is desirable to limit the range of feasible solutions to ones that have
desirable attributes, specifically, matching the time to peak and the outflow peak
discharge. Tighter values of ¢, are recommended at points where the observed out-
flow is above the average outflow. One strategy for specifying the ¢, values is to
prescribe €1 (1€ at time to peak £, where the outflow is 0,) and ¢ (i.e. at the
lowest outflow O,) to a desired level. Now ¢, at any time point ¢ is specified by
logarithmic interpolation between €., and €; as

05(1/0,)" (12)

& = Etpeuk
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where
b=logle,_, /er)/108(04/0,) (13)

Another strategy would be to adopt linear interpolation between ¢, and é,.
Typically, one should specify €, < €. This scheme ensures that the peak flow
characteristics are well preserved.

(2) A bound on the fractional error in outflow volume approximated as a discrete
sum of the hydrograph ordinates

> 0.8
t

€ < — - < €v (14)
Z Ol. B
{
We chose €, = 0.9 and ¢,, = 1.1 for this study.
(3) Estimated baseflow is within some tolerance of a prior estimate BASE
(1-7)BASE< ) By < (I + 7)BASE (15)
for this study we chose 7 =0 and BASE = O, 5 — I a.
(4) Bounds on decision variables
Km, IgngKm. u (16)
0.0<x, <05 (17)
CV, \<CV.<CV, , (18)
ATK, | <ATK,<ATK, , (19)
0.0 <FAC.<1.0 (20)
B{0c, 1} < By, < By, (21)

These bounds condition the solution to lie in a suitable feasible region, where K,, |,
CV. 1. ATK . By 1. K . CV, , ATK,, and By , are the lower and upper
bounds of the parameters K,,,, CV,, ATK, and By, respectively.

The parameter estimation scheme described here is easily generalized to situations
with multiple outflow records (i.e. multiple reaches). In such cases one could move
reach by reach solving independent optimization problems for each one. We feel that
this is preferable to solving a single large optimization problem for all reaches
simultaneously. The computational effort involved in solving the single larger
optimization problem is significantly greater than that for solving the sequence of
individual problems. The optimization process can be readily automated to solve the
reach by reach sequence of optimization problems. Since, the accuracy constraints are
specified for outflow at each reach, identifiability of the overall model is maintained.

A number of options are available for treating multiple storms. One could solve the
optimization problem once for muitiple storms and determine ‘average’ optimal
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values for the parameters K, x,,, CV,, ATK,, FAC, and Bg.. Alternatively, one
could solve for these parameters storm by storm, and then try to relate their variation
to storm and antecedent condition attributes. The choice between these two strategies
may depend on the purpose of the application and the data and resources available.

Sometimes it may be desirable to consider a ‘non-linear’ flow generation and
routing model, where the parameters depend on the magnitude of flow or rainfall,
and may even be related to known drainage basin characteristics such as slope,
drainage area, surface soils and elevation. If parametric functions that can describe
such relations are available or can be assumed, the associated parameters can also be
solved for in the same manner as described here.

4. The solution algorithm

It can be seen from the model described above, that the objective function and the
constraints are non-linear in the decision variables. This problem is solved using a
Feasible Sequential Quadratic Programming (FSQP) algorithm developed and
implemented by Zhou and Tits (1993). This algorithm solves the minimization of a
set of smooth non-linear objective functions subject to general smooth non-linear
constraints. Zhou and Tits (1993) argue that this algorithm is globally convergent and
locally superlinear convergent.

A succession of quadratic programs is solved to determine the optimal solution
formed by Taylor series approximations of the functions at each solution point (see
Luenberger, 1973). The reader is referred to Zhou and Tits (1993) for details of the
algorithm. The FSQP routines can be obtained by contacting Professor Andre’L.
Tits, Electrical Engineering Department and Institute for Systems Research,
University of Maryland, College Park, MD 20742 (e-mail: andre@eng.umd.edu).

5. Applications

The model was applied to three cases, two synthetic data sets, with and without
lateral inflows, and one real data set from Dhalegaon—Gangakhed reach of the
Godavari river in India. The initial values for the parameters K and x were given
based on the observed discharge hydrographs, and for other parameters (CV,, ATK,
and FAC,) were based on past experience.

5.1. Case 1 (synthetic data set without lateral inflows)

Consider a reach AB (Fig. 1) with a triangular inflow hydrograph at A as shown in
Fig. 2. The observed outflow hydrograph is obtained by routing this hydrograph to
B using K =4 h and x = 0.2. The number of time periods considered was 25 and
the number of constraints was 52. The estimated K and x from our model are 4.0 h
and 0.2, respectively. Here we used ¢, = ¢ = 0.01. The hydrographs are shown in
Fig. 2.
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Fig. 2. Flood hydrographs — synthetic data set (case 1) without lateral inflow.

5.2. Case 2 (synthetic data set with lateral inflows)

Reach AB is considered with a inflow hydrograph at A as shown in Fig. 3. The
rainfall considered over the single ungauged catchment is shown in Fig. 3. Lateral
inflows were derived from this rainfall using Eqs. (7) and (8) with CV,. = 1.80 m s,
ATK,. =400 and FAC, = 1.00. The baseflow in the ungauged catchment was
assumed to be zero. The observed outflow hydrograph is obtained by routing this
to B using K; =55 h, x, =0.2, K, =40 h and x, = 0.2 for the two reaches,
respectively. The number of time periods considered were 48 and the number of
constraints was 92. The estimated parameters from the model were K; = 5.5 h,
x1 =02, K, =40h, x, =02, CV, =180 ms ', ATK, = 400 and FAC, = 1.00.
Here ¢, = ¢ = 0.01 was used. The hydrographs are shown in Fig. 3.

5.3. Case 3 (real data set with lateral inflows)

The Godavari is one of the major rivers in India, flowing through the states of
Maharashtra and Andhra-Pradesh. The reach under consideration was Dhalegaon—
Gangakhed which is about 500 km. from the source. Flow observations are made at
Dhalegaon and Gangakhed and the length of the river between this reach is 93 km.
The ungauged catchment between these two gauging sites is 3035 km?>. The map of the
river system is shown in Fig. 4. Most of the floods in this region are due to rainfall
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Fig. 3. Rainfall over single ungauged catchment and flood hydrographs — synthetic data set (case 2) with
lateral inflow.

from the southwest monsoon, which is active from June—October. Observed
discharge at Dhalegaon is the inflow (/,) and the observed discharge at Gangakhed
is the outflow (O,). Daily weighted rainfall over the catchment was obtained using
Thiessen polygon method with daily rainfall data from seven stations situated in and
around the catchment. The daily weighted rainfall thus obtained is distributed over a
24 h period using the hourly rainfall pattern from the hourly rain gauge station,
Gangakhed (see Fig. 4). The weighted hourly rainfall pattern thus obtained, for the
ungauged catchment is shown in Fig. 5. If data from more than one hourly rain gauge
station are available then a weighted hourly pattern is obtained for distribution of the
daily weighted rainfall. The flood case studied here was during the period 31 August
1977 (10:00 h) to 5 September 1977 (24:00 h). The values obtained for the parameters
were Ky =2.00 h, x;, =0.01, K, =8.42 h, x; = 0.01 for the two subreaches with
CV,=450 m s™' ATK,=20.22 and FAC, = 0.16 for the ungauged lateral
inflows. Following the prescription given earlier By, is taken to be 26.0 cumecs (i.c.
01 B — /i, A = 36.0 — 10.0). We chose ¢, using Egs. (12) and (13) with €t = 0-1 and

= 0.8. The number of time periods for this storm was 135 and the number of
Constramts was 84. These estimates of K are consistent with the field estimates of
travel time in these reaches and also agree with the values obtained from other
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Fig. 4. Map of ungauged catchment between the reach Dhalegaon and Gangakhed — the Godavari river,
India. Dots show the location of raingauges.

methods. The routed and the observed hydrographs along with the estimated
ungauged lateral inflows are shown in Fig. 5. Acceptable agreement between the
routed and the observed outflow hydrograph is observed.

6. Summary and conclusions

A straightforward application of non-linear optimization to the determination of
parameters for a simple, linear model of flood routing and rainfall runoff generation is
presented. The presentation is kept concise and the examples simple for the sake of
clarity.

The two synthetic examples showed that the optimization scheme is capable of
recovering the right parameters at least for simple and identifiable situations, where
we know that the underlying model is correct. However, there is no assurance that the
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Fig. 5. Rainfall over ungauged catchment and flood hydrographs — Dhalegaon—-Gangakhed reach of the
Godavari river, India.

simple, linear flow routing and runoff generation models used here are correct in a
‘real’ situation. In such a case, the parameters cannot be determined uniquely.

It is unlikely that except in a contrived example the routed and observed outflow
hydrographs would or should be identical. The representation of the physical
processes is far from complete or unique in such models. Moreover, model
parameters that lead to a certain minimum of the fitting criteria (least sum of squares
of errors) need not be uniquely specified. The same total squared error may be
obtained by parameter choices that (1) undershoot the peak outflow dramatically,
match a large part of the outflow hydrograph and then decay slowly relative to the
observed outflow and (2) match the outflow hydrograph with a small pointwise error
throughout, rather than a large under or overshoot at a point. Hence the need for an
optimization solution that is constrained to have bounded pointwise error as well, as
is done here.

The optimization algorithm merely steers us towards one of possibly many
acceptable solutions. Part of this is due to possible model misspecification, and
part is due to the lack of information on causative processes and their operative
values during the events of interest.

Increased sophistication in process representation calls for substantially greater
amount of information. The associated increase in the number of parameters to be
solved reduces the degrees of freedom, but may not improve the identifiability of the
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model. The simplicity of the model presented here is attractive for exploratory
practical applications with the amount of data typically available in developing
countries.
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