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Abstract

Low-frequency (interannual or longer period) climatic variability is of interest, because of its significance for the under-
standing and prediction of protracted climatic anomalies. Since precipitation is one of the key variables driving various
hydrologic processes, it is useful to examine precipitation records to better understand long-term climate dynamics. Here, we
use the multi-taper method of spectral analysis to analyze the monthly precipitation time series (both occurrence and amount)
at a few stations along a meridional transect from Priest River, ID to Tucson, AZ. We also examine spectral coherence
between monthly precipitation and widely used atmospheric indices, such as the central Northern Pacific (CNP) and southern
oscillation index (SOI). This analysis reveals statistically significant ‘signals’ in the time series in the 5–7 and 2–3 year bands.
These interannual signals are consistent with those related to El-Nin˜o southern oscillation (ENSO) and quasi-biennial
variability identified by others.q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The identification and explanation of recurrent cli-
matic patterns can have significant implications for
long-term climatic forecasts. Though the variation in
climate from year to year may seem random, a careful
examination of historical data can sometimes reveal a
remarkably coherent global pattern of oceanic and
atmospheric anomalies, which reappears every few
years in approximately the same sequence and form.
There is growing evidence to this effect and also to the
fact that global and regional climate variability is well
organized on interannual and interdecadal time scales
(Mann and Park, 1993; Mann and Park, 1994). Two
modes of low-frequency variability (at the interannual

time scales) are the El Nin˜o/southern oscillation
(ENSO) and the quasi-biennial oscillation (QBO)
(Rasmusson and Carpenter, 1983; Ropelewski and
Halpert, 1986; Burroughs, 1992; Peixoto and Oort,
1992). ENSO-related events can have major impacts
on US atmospheric weather patterns, which, in turn,
modulate the surface climate (i.e. wind, temperature
and precipitation) and, consequently, streamflow
(Cayan and Peterson, 1989; Cayan and Webb, 1992;
Kahya and Dracup, 1993; Kahya and Dracup, 1994).

Recognition of low-frequency variability leads to
changes in the interpretation and utility of hydro-cli-
matic records. The impact of climate variability on the
hydrologic cycle is also important from the point of
view of understanding the underlying dynamics of the
system. The identification of coherent, low-frequency
patterns, may also be relevant to interpretation of
long-range persistence or the Hurst effect.
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From the recent works of Klein and Bloom (1987),
Kiladis and Diaz (1989), Cayan and Peterson (1989),
Leathers et al. (1991), Lins (1993) and Mann et al.
(1995), among numerous others, it is clear that
atmospheric and oceanic conditions in the Pacific
basin exert considerable influence on the low-
frequency patterns of North American climatic and
hydrologic variability.

In this study, we focus on connections between two
atmospheric circulation indices and variability in pre-
cipitation along a meridional transect in the western
US. Past studies include simply examining the
historical records for subtle changes in climatic pat-
terns (Rasmusson and Carpenter, 1983; Rasmusson
and Wallace, 1993), and using the correlation type
of analysis to find strong statistical relationship
between atmospheric indices versus precipitation,
temperature and streamflow (Yarnal and Diaz, 1986;
Bradley et al., 1987; Cayan and Peterson, 1989; Red-
mond and Koch, 1991), and a harmonic analysis to
examine the climate anomalies (Ropelewski and
Halpert, 1986; Ropelewski and Halpert, 1987;
Ropelewski and Halpert, 1989; Piechota and Dracup,
1994), on a case by case basis.

In this paper, we use the nonparametric multi-taper
method of spectral analysis of Thomson (1982), on the
time series of monthly precipitation and monthly rates
(defined as number of wet days in the month divided
by the number of days in the month), a relatively
direct measure of the occurrence process.

A brief description of the data sets is first provided.
The multi-taper method of spectral analysis is next

outlined. Results from the analysis are then
summarized and discussed.

2. Data sets

We chose seven stations at approximately 1128–
1168W longitude going from Idaho (ID) to Arizona
(AZ). The station and data information (latitude, long-
itude, elevation, length of record and source of data)
are given in Table 1. From the daily precipitation data,
total monthly precipitation and the monthly rate were
first calculated for each station. In order to look for
connections in precipitation with large-scale atmo-
spheric fluctuation (ENSO, QBO), we chose two
atmospheric indices, namely, the southern oscillation
index (SOI) and the central North Pacific (CNP),
which have been shown to be good indicators for
western US atmospheric variability (Cayan and Peter-
son, 1989). The hydrologic impact of variability in
atmospheric circulation is strong in this arid region.

The SOI data is a time series of monthly mean
difference in sea level pressure (SLP) at Tahiti
(approximately 1508W, 188S) and Darwin (approxi-
mately 1308E, 138S), and is a commonly used
indicator of ENSO. ENSO is an identified coupled
ocean-atmosphere phenomena in the tropical Pacific
ocean, with significant impacts on global climate. On
average, the western Pacific is warm with a low pres-
sure over Indonesia and northern Australia, while the
eastern Pacific is cold, with a high pressure centered
near Tahiti. This east-west temperature and pressure

Table 1
Data sets analyzed

Latitude Longitude Elevation (ft above MSL)

Priest River, Idaho (PRR) 488219N 1168509W 2380
Sandpoint, Idaho (SNP) 488179N 1168349W 2100
Logan, Utah (LOG) 418459N 1118489W 4790
Snake Creek, Utah (SNC) 408339N 1118309W 6010
Alton, Utah (ALT) 378269N 1128299W 7040
Miami, Arizona (MIM) 338249N 1108539W 3560
Tucson, Arizona (TUS) 328159N 1108579W 2440
Southern Oscillation Index (SOI) SLP (Tahiti)–SLP (Darwin)
Central Northern Pacific (CNP) Average SLP (170E–150W, 35N–55N)

SLP = sea level pressure.
All the data except SOI and CNP were obtained from Earth Info CD-ROM.
SOI and CNP data were obtained from Dr Dan Cayan.
All the data sets were of the same length, i.e. 1932–1992.
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gradient results in strong trade winds blowing from
the eastern Pacific to western Pacific (this is also
known as the Walker circulation) and, consequently,
strong convection and very high precipitation around
the western Pacific relative to the east. During El Nin˜o
years, a warm anomaly appears off of South America,
which reduces the temperature gradient and hence the
winds. The weakened winds help in increasing the sea
surface temperatures and get further weakened, thus,
setting up a positive feedback. The weakened trade
winds also reduce the pressure gradient (Cane, 1986;
Philander, 1990). This introduces a major perturbation
of the global atmosphere and has far-reaching effects
on global climate (Ropelewski and Halpert, 1987).
The ENSO, generally referred to as El Nin˜o, has,
typically, a life cycle of approximately 22 months
and recurrence interval of approximately 3–8 years.
The weakening of the trade winds and subsequently
the pressure gradient, shows up as a low negative
value in SOI — which means an El Nin˜o event is in
progress.

ENSO has teleconnections to higher latitudes
through wave-like patterns that change the jet stream
and storm track locations in the northern Pacific,
which, in turn, have a profound impact on regional
temperatures and precipitation in the US (Horel and
Wallace, 1981). The CNP index (Cayan and Peterson,
1989) constructed by averaging the sea level pressure
(SLP) over the region 358N–558N and 1708E–1508W,
serves as a good measure to reflect the ENSO
teleconnection in the northern Pacific. This index is
similar to the Pacific North America (PNA) index, and
is available for a longer period than PNA. The CNP
index has been shown to be more strongly tied to the
precipitation in the north western US than SOI (Cayan
and Webb, 1992).

The SOI and CNP data were obtained from Dr D.R.
Cayan at the Scripps Institution of Oceanography, San
Diego.

3. Methods

Spectral analysis (Jenkins and Watts, 1968; Brillin-
ger, 1981; Percival and Walden, 1993) is a useful tool
for exploring structured temporal variations
embedded in hydroclimatic data. The basic idea (Eq.
(1)) is to decompose the time series into orthogonal,

harmonic components using Fourier basis functions:

x(t) =m + ∑
N=2

j =1
{ Ajcos(2pfj t) +Bjsin(2pfj t)}

t =0, …,N −1, (1)

wherex(t) is the observed time series of lengthN, m is
the mean of the series, andAj and Bj are amplitude
coefficients of cosine and sine terms at frequenciesf j

(defined asj/N; 1 # j # N), respectively.
By construction, the information in each compo-

nent at different frequencies is independent (i.e.Aj

and Bj are uncorrelated for different values ofj),
thus allowing the annual cycle and other cyclic phe-
nomena to be isolated. If there are no significant
periodicities in the data set, theE[Aj] = E[Bj] = 0,
and E[A2

j ] = E[B2
j ] = j2

j , the variance associated with
thejth component. The variance,j2, of the time series,
x(t), is then simply the sum of the variances of these
components. The power spectrumS(f) is then defined
as the variance associated with the harmonic compo-
nent with a frequencyf. Theoretically, for a white
noise process (i.e. the time series is serially uncorre-
lated and Gaussian), all frequency components con-
tribute equally to the process, and the spectrum is a
constant horizontal line. If the time series is strictly
periodic with a frequencyf*, all the variance is asso-
ciated with a frequency component at that frequency,
and the theoretical spectrum is represented by a ver-
tical line at f* of height equal to the series variance.
For multiple periodic components, theoretically, the
spectrum will have vertical lines of height equal to the
squared amplitude of the respective periodic compo-
nents. A linear or higher-order trend in the series,
leads to a corresponding variance contribution at the
zero frequency (i.e. a harmonic with an infinite period).
An autoregressive (AR) process of order 1 is often
used as a null model to account for serial correlation.
The theoretical spectrum for such a process is a mono-
tonically decreasing function of frequency given as
(Bartlett, 1966):

S( f )
j2

1−2rcos(pf =fN) +r2 (2)

The spectrum of a long memory or a fractal process
can be log linear with frequency. A time series with
periodic, trend and autoregressive components, will
have a spectrum that shows a combination of these
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features. The spectrumS(f) has a dual relationship to
the autocovariance functions(t) of the time series, as
indicated in Eq. (3):

S(f ) =
�`

−`
s(t)e− i2pftdt ands(t) =

�`

−`
S(f )ei2pftdf :

(3)

The spectrum and the autocovariance function are
different, but complement representations of the
serial dependence information in a time series. The
spectrum identifies this information with distinct fre-
quencies, while the autocovariance represents it in
terms of discrete lags. The dependence structure for
each frequency component in time is essentially
aggregated together in terms of lags in the auto-
covariance function. A strictly periodic time series
will have a periodic autocovariance function, that
can be modeled by a high-order autoregressive
model. This is represented as a single component in
the spectrum. The spectrum is thus useful for decom-
posing the serial dependence information into periodic
(or nearly so), autoregressive and trend components. In
practice, many methods, parametric and nonpara-
metric, have been developed to estimate the spectrum
from data. The reader is referred to Percival and Wal-
den (1993) and Thomson (1982; 1990) for a detailed
discussion of the attributes of these methods. Since we
use the spectrum as a data exploratory tool, nonpara-
metric methods are appropriate.

Nonparametric methods for spectral analysis
estimate the spectrum directly from the data, using
either a discrete Fourier transform of the data (i.e.
the periodogram) or, equivalently, of the sample auto-
covariance function. Neither of these is usually satis-
factory for related reasons. Depending on how it is
computed [i.e. with the divisor ofN or (N − t) for
lag t], the bias and/or variance of the sample estimate
of the autocovariance can increase with lag. Since the
estimate of the spectrum at any frequency will depend
on the autocovariance function at each lag, this
impacts the spectrum at every frequency. The
spectrum computed using a direct Fourier transform
of the data, is biased in the manner shown below. The
finite discrete Fourier transform (DFT) of the data,
x(0),…,x(t),…,x(n − 1) is given by:

y(f ) = ∑
n−1

t =0
e− i2pf [t − (n−1)=2]x(t): (4)

For a finite data set, the DFT is related to the spec-
trum as:

y(f ) =
�1=2

−1=2

sinNp(f −v)
sinp(f −v)

dZ(v) =
�1=2

−1=2
G(N, f ,v)dZ(v),

(5)

where the spectrumS(f) is defined through {S(f)df = E
[ldZ(f)l2]}, where E[.] denotes expectation.

The periodogram estimateSp(f) is simply ly(f)l2,
whose properties will not correspond to those of
S(f), since the termG(N,f,v) in Eq. (5) poorly approxi-
mates a Dirac delta function. This term is a cons-
equence of a rectangular window of widthN (the
length of record) placed on the underlying process.
The consequence of convoluting a rectangular data
window with the Fourier transform is ‘leakage’ of
power from frequencies with high power to a broad
band of frequencies, in a manner that depends on the
sample sizeN. The practical implication of this pro-
blem is that the resulting spectral estimate appears to
be broad band and the peaks do not meet tests for
statistical significance, i.e. structure in the series is
not identified. The traditional solution to this problem
is to apply a taper window to the data (or equivalently
to the autocovariance function) to downweight the
data near the ends (or the autocovariance estimates
at long lags). Typically, the data on both ends of the
time series are smoothly downweighted using a pre-
scribed function. Given that the number of frequen-
cies considered and hence, the number of parameters
to be estimated increases withN, each periodogram
ordinate (i.e. estimate of the spectrum at each
frequency f j) has only 2 degrees of freedom (dof),
irrespective of the length of the time series. Tapering
further increases the variance of the estimate, since it
can be viewed as a reduction of the effective sample
size. Given the highly-associated variability, the per-
iodogram cannot be reliably used to assess frequency
structure. The traditional solution to this problem is to
smooth the periodogram using a variety of weighted
moving average smoothers applied across frequen-
cies. While these reduce the variance of the spectral
estimates, sharp peaks can be smeared over the aver-
aging window, making the detection of harmonics
difficult.

Thomson (1982) provides the following motivation
for the multi-taper algorithm for spectrum estimation.
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He points out that: (a) the classical periodogram is an
inconsistent estimator of the spectrum; (b) without a
taper window, it may be too biased to be useful; (c)
usual tapers can increase variance of estimation by
reducing the effective sample size; (d) smoothing
the periodogram is unsatisfactory for spectra with a
large range and line and broadband components, since
the true spectrum is not smooth; and (e) since the
periodogram-based spectral estimator does not
directly use phase information, line detection is
poor. He sets his sights on developing an estimator
that: (a) is consistent; (b) has good small sample
performance in terms of estimation variance; (c) is
data adaptive; (d) is nonparametric, i.e. locally
approximates the spectrum using information only
from neighboring frequencies; (e) works well with
spectra with a high dynamic range; (f) is computation-
ally easy; and (g) whose statistics can be estimated,
and hence significance tests for line components and
coherence can be provided. We outline the aspects of
the multi-taper algorithm relevant to our presentation
and refer the reader to Thomson (1982) and chap. 7 of
Percival and Walden (1993) for details. Percival and
Walden (1993) include a detailed example application
to the monthly flows of the Willamette River in
Oregon.

The multi-taper method, as its name implies, usesK
different data tapers (or downweighting schemes).
The tapers are specially designed so that they lead
to independent (orthogonal) estimates of the spectra,
weight different segments of the data quite differently,
and hence, emphasize different features of the spec-
trum. TheK spectra computed using each of the tapers
are then combined to form the final spectrum estimate
in a manner that provides substantial gains in bias and
variance, and hence, in signal detection.

Given the estimatey(f), one can seek a solution for
dZ(fo) in Eq. (5) in some locale (fo −W, fo + W) of a
frequencyfo. This is an inverse problem parameter-
ized by G(N,f,v). Thomson pursues a least squares
solution, by considering a weighted eigenfunction
expansion in this locale, and then an appropriate
combination of the resulting estimates. Consider the
K term (k = 0,…,K − 1) eigenfunction expansion:

lk(N,W)·Uk(N,W; f ) =
�W

−W
G(N, f ,v)U(N, W; v)dv,

(6)

whereUk(N,W;f ) is the kth eigenfunction centered
at f , with window width W, and lk(N,W) the
corresponding eigenvalue.

The eigenfunctions (called discrete prolate
spheroidal wave functions) are ordered by decreasing
eigenvalue, with the firstNW eigenvalues close to 1.
Consequently, of all functions that are DFTs of some
discrete sequence, these leading eigenfunctions have a
maximum energy concentration in the interval (fo −
W, fo + W). This implies that the tapers are leakage
resistant. The window widthW is 0〈1/2, and is usually
of the order of 1/N to retain high resolution of the
resulting estimate. The idea here is that if theK-
term approximation in Eq. (6) is ‘good’, then a good
solution to the estimation ofS(f) is available. Thom-
son derives such a solution by first consideringK
spectral estimates corresponding to each of the eigen-
functions, and then combining them using an optim-
ality criteria derived from estimates of the mean
square error of estimate of the spectrum in the locale
of interest. TheK eigen spectraSk(f), k = 0,…,K − 1,
are defined through:

y(f ) = ∑
n−1

t =0
x(t)

vt, k(N,W)
ek

e− i2pf (t − (N −1)=2), (7)

Sk(f ) = lyk(f )l2, (8)

whereek is 1 for k even, andi for k odd; andvt;k(N,
W), the kth discrete prolate spheroidal sequence
(DPSS), is defined such that its Fourier transform
givesUk(N,W;f − fo).

The multi-taper spectral estimate is obtained as:

SM (f ) = ∑
K −1

k =0
wk(f )Sk(f ), (9)

and wk(f) is a weight associated with thekth eigen
spectrum estimate at frequencyf.

The windowsUk(.) are positive everywhere, and
hence, the problem of getting negative estimates of
S(f) resulting from traditional higher-order spectral
windows is averted. The combined estimate fromK
orthogonal tapers also circumvents the loss of resolu-
tion and variance increase problems, endemic to per-
iodograms smoothed with a single taper. The
orthogonality of the eigenfunctions leads theSk to
be approximately uncorrelated. The multi-taper
method recovers information lost by using a single
taper and by ignoring the phase information in the
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periodogram. A number of strategies for choosing the
weights wk(f) at each frequencyf, are indicated by
Thomson (1982). These range from a simple average,
to weights proportional to the eigenvalueslk, to a
fully data adaptive and recursive procedure that
internally estimates the bias and variance of the
local estimate. We used the last two strategies in our
work. The latter allows improved separation of the
line and broad band spectral components. We refer
the reader to Thomson (1982) for details of the
DPSS and thewk, and discuss the choice ofW and
K, the user-selected parameters of the model.

The half bandwidthW is usually specified in terms
of the Rayleigh frequencyfR = (nDt)−1, whereDt is the
sampling frequency, aspfR, wherep is usually a small
integer. The corresponding DPSS is called app taper.
The corresponding spectral estimate averages in the
frequency bandf 6 pfR. For example, a 2p taper, for a
60 year data set, would average overf 6
0.03333 cycles per year. Note that this would corre-
spond to periods of 2.3–2.7 years for a band centered
at f = 0.4, and 5–7.5 years for a band centered atf =
0.1667, and that everything with a period greater than
33 years (1/0.03333) will be lumped with the ‘trend’.
We see from this example that it is desirable to use a
small value ofp to obtain a higher resolution in the
low-frequency range. On the other hand, a small value
of p can lead to peak splitting in the high-frequency
range. Comparing estimates obtained by varyingp
over a small range is consequently desirable. AsK
increases, the variance ofSM decreases, however,
the broad band bias can increase.SM is distributed
asx22K, rather than asx22 for the periodogram, and
the increased dof corresponds to the reduced variance.
The first (2p − 1) tapers are leakage resistant, soK is
usually taken to be 2p − 1. Asp increases, the number
of leakage-resistant tapers increases. Note that, asN
increases, one can increasep while retaining the same
spectral resolution. The estimateSM(f) is unbiased, but
its local features (amplitude) will depend onp andK.
Consequently, it is desirable to also look at a signifi-
cance test for line components, based on the ratio of
variance explained by a peak atfo, to unexplained
variance in a band centered atfo.

Extensive examples of the application of the multi-
taper method to hydroclimatic data are presented by
Mann and Park (1993; 1994; 1996), Diaz and
Pulwarty (1994), and Lall and Mann (1995). Lall

and Mann (1995) also compare this method with
another recently popular method for spectral analysis,
called singular spectral analysis (Vautard et al., 1992)
that may be better at identifying time patterns in the
data, but worse for frequency domain analysis. Sig-
nificance tests for testing for peaks (line components)
in the spectrum associated with harmonics, are dis-
cussed by Mann and Lees (1996) and Thomson
(1990). Thomson advocates nonparametric signifi-
cance tests based on a jacknife or resampling
approach. Mann and Lees (1996) consider more tradi-
tional alternatives, including the method by Thomson
(1982) method, that are based on an assumption that
the amplitudesAj and Bj are Gaussian random vari-
ables and hence, the spectral ordinate or variance at a
frequency f j has the F distribution, with the dof
dependent on the effective number of parameters
and sample size subsequent to tapering or smoothing.
They recommend two strategies: (1) testing against a
null hypothesis of ‘red noise’ (AR1 process fitted to
the data); and (2) a more flexible null hypothesis that
assumes a ‘locally white noise’ background spectrum,
whose variance is estimated as the median of theS(f)
values in a windowf j 6 wf. The significance test is
then based on a test statistic formed as the ratio of the
S(f j) at frequencyf j, to the background value ofS(f) at
f j estimated for either the ‘red noise’ (Eq. (2)) or the
‘locally white noise’ assumed backgrounds. Based on
our experiments with synthetic data, we adopted the
‘locally white noise’ background approach to signifi-
cance testing for peaks withwf = 0.25 cycles per year.
This provided the most robust selection of frequencies
for data that contained periodic components, trends
and AR(1) components.

Our interest was in identifying quasi-periodic com-
ponents in the precipitation series and relating them to
some key climate indices, that were identified earlier.
Since our model for both the site precipitation and the
index series considers that the series have periodic as
well as autoregressive, trend and ‘noise’ components,
we may expect that even if both series have compo-
nents of the same dynamical system that are periodic,
the correlation across the raw series may not be very
high. However, if we can identify the periodic com-
ponents in each of the series first, it is meaningful to
directly identify the correlation or coherence of these
components or signals. Ultimately, if our interest lies
in the prediction of precipitation using climate
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indices, this may provide us with a measure and
means of predictability, component by component.
The multi-taper estimate of spectral coherenceC( f )
across two time seriesx(1)

t , t = 0,…,N − 1, andx(2)
t ,

t =0,…,N − 1, is estimated using Eq. (10). A confi-
dence test (see Brillinger (1981)) similar to theF
variance ratio test is used to test for the significance
of the coherence amplitude.

C(f ) =
∑

K −1

k =0
y(1)p

k (f )y(2)
k (f )

∑
K −1

k =0
y(1)p

k (f )y(1)
k (f ) ∑

K −1

k =0
y(2)p

k (f )y(2)
k (f )

� �1=2
,

(10)

where (*) represents a complex conjugate.
Each of the time series given in Table 1 was

analyzed using the multi-taper method to identify sig-
nificant frequency peaks. Next, the spectral coherence
between the precipitation series and the atmospheric
indices (SOI and CNP) was estimated to identify the
significant coherent frequencies. Finally, each time
series was bandpassed at a few significant frequencies
to see the nature of the underlying time variations
associated with the quasi-periodic modes represented.
The bandpass retains only the components of the time
series that can be represented by harmonic
components with frequencies in the specified band.

4. Results from spectral analysis

The results from the spectral analysis of individual
series are summarized in Table 2. The sites are
arranged from north to south (downwards). The peri-
ods reported correspond to peaks that are higher than
the 90% significance level based on the ‘locally white
noise’ assumption null hypothesis. Examples of spec-
tra and confidence limits for the precipitation and rate
time series for Priest River, ID; Logan, UT; Tucson,
AZ; SOI and CNP, are shown in Fig. 1(a)–(h).

After a preliminary screening of the spectral output,
it was clear that one could designate bands in which
there was statistically significant power. These bands
were generally consistent with the frequency bands in
which hydroclimatic data show evidence of activity
(Lall and Mann, 1995; Mann et al., 1995; Mann and
Park, 1996). In selecting these bands, we also
considered the width of the frequency window
(0.033 cycles per year for the 61 years of data) asso-
ciated with a spectral estimate at a given frequency.
The resulting frequency bands were designated as 2–
3, 3–6, 6–9 and 10 years longer. While several spec-
tra had peaks in a interdecadal band centered around
15 years, we chose to lump these with the secular
band (trend) given the relatively short length of the
records analyzed. The activity in the 2–3 year band is

Table 2
Results from spectral analysis

Period (years)
Data set 2–3 3–6 6–9 〉10

PRR-R 4.7 x
PRR-P 4.3 8.3 x
SNP-R 2.4 8.5 x
SNP-P 4.5 8.5
LOG-R 2.1 x
LOG-P 2.1 x
SNC-R 2.1 7.7 x
SNC-P 2.1 6.3 x
ALT-R 2.6 x
ALT-P
MIM-R x
MIM-P 2.7 6.3
TUS-R 2.6 6.3
TUS-P 2.8 5.3 x
SOI 2.5 4.3
CNP 3.3 x

R refers to the rate of occurrence and P to the precipitation amount. The significance was checked at the 90% level.
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Fig. 1. Spectra of precipitation amount from data at: (a) Priest River, ID; (b) Logan, UT; and (c) Tuscon, AZ. Spectra of precipitation
occurrence rate from data at: (d) Priest River, ID; (e) Logan, UT; and (f) Tuscon, AZ. Spectra of: (g) SOI; and (h) CNP. In all these figures the
dotted lines represent the 90%, 95% and 99% confidence levels.
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Fig. 1. (continued)
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usually associated with the Quasi-Biennial Oscillation
(Trenberth and Shin, 1984) and the high-frequency
end of ENSO. Variability at this time scale has been
observed in north–south US temperatures by Dettin-
ger and Ghil (1991), in winds and sea level pressures
by Deser and Blackmon (1993), and in air tempera-
tures by Gordon et al. (1992). The 3–6 year band is
usually associated with ENSO, and the 6–9 year band
is presumed to reflect the nonlinear interaction
between QBO and ENSO (Labitzke and Van Loon,
1988; Barnston et al., 1991). The (〉10 years) band
may reflect the decadal scale variability of the North-
ern Pacific activity, due to interaction between ENSO
and feedback effects in the extratropics (Kumar et al.,

1994; Trenberth and Hurrell, 1994), and also the cen-
tury-long warming trend (Cane et al., 1997). This
band is prominent in the analysis of most series.
While the period associated with individual signifi-
cant peaks varies, once one recognizes that the analy-
sis can only identify frequencies within a band of
60.033 cycles per year, it is seen that the peaks
cluster around 2, 3, 4, 5 and 8 years.

Representative multi-taper method estimates of
coherence of the precipitation amount and rate time
series at Priest River, Logan, Tucson, and SOI with
CNP, are presented in Fig. 2(a)–(d). The dashed hor-
izontal lines in these figures show the 90% and 95%
confidence levels for squared coherence. Table 3

Fig. 2. Spectral coherence between CNP and precipitation amount (solid line); between CNP and precipitation occurrence rate (dashed line)
from data at: (a) Priest River, ID; (b) Logan, UT; and (c) Tuscon, AZ. Spectral coherence: (d) between SOI and CNP. The dashed horizontal
lines in all these figures indicate the 90% and 95% confidence levels.
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presents the frequencies with statistically significant
coherence between the precipitation time series, and
SOI and CNP. The frequencies at which the coherence
between two series is significant, corresponds to a
significant or near-significant peak in the spectra of
one or both of the series. In general, the occurrence
rate exhibits a stronger coherence than the precipita-
tion amount with the atmospheric indices. The occur-
rence rate may hence, be a better indicator of the
atmospheric variability–precipitation connection.
This could be: (1) because of nonlinearity in the gen-
eration of precipitation as a function of atmospheric
flow; and (2) because precipitation occurrence may

have a larger coherent spatial ‘signal’ than the preci-
pitation amount, which may fluctuate quite a bit due to
local influences. Also, note that the patterns that
emerge in spectral coherence with SOI are more
similar as we move southwards. Likewise, the patterns
of spectral coherence with CNP are more similar as
we move northwards. This is consistent with the
observations of Cayan and Peterson (1989), Cayan
and Webb (1992), Kahya and Dracup (1994) and
others in western US, using streamflow data, and
precipitation and temperature data (Ropelewski and
Halpert, 1986; Yarnal and Diaz, 1986).

Noting that a number of significant frequencies

Table 3
Results from coherence analysis

Period (years)
Data set 2–3 3–6 6–9 〉10

Coherence with CNP
PRR-R 2.2 3.7 7.4
PRR-P 2.5 3.5 x
SNP-R 2.6 3.5,5.7 6.8 x
SNP-P 2.5 4
LOG-R 2.2 3.2 7.8 x
LOG-P 2.2 3.7 x
SNA-R 2.2 3.3 7.8 x
SNA-P 2.2, 2.8 3.7,5.7 6.9,9 x
ALT-R 2.7 3.7 x
ALT-P 2.7 3.5,4.3
MIA-R 2.2 3.2,4.5 x
MIA-P 3.2 7.4 x
TUS-R 2.1 3.2,4.3 7.4, 8.5 x
TUS-P 3.1 7.4 x

Coherence with SOI
PRR-R 3.7
PRR-P x
SNP-R x
SNP-P 3.4
LOG-R 2.5 3.6 7.8 x
LOG-P 2.6 7.4
SNA-R 7.8 x
SNA-P 2.5 3.2,4.3 9
ALT-R 5 8.5
ALT-P 2.5 4.7 x
MIA-R 2.1 3.7 9 x
MIA-P 4.7 7.4 x
TUS-R 2.5 3.8 x
TUS-P 3 7.4 x
CNP 4.3 x

R refers to the rate of occurrence and P refers to the precipitation. For 3, 2p tapers the F value for the squared coherence at 90% confidence
is 0.68.
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from the multi-taper method spectra (Table 2) and
from coherence analysis (Table 3) are in the 3–
6 year period, we bandpassed each of the time series
to retain only this frequency band. Bandpassing can
be thought of as filtering using the desired frequency
band, or constructing a moving average of the data
such that contributions from averaging periods out-
side the bandpass (3–6 years here) are excluded.
The amplitude of the bandpassed series of SOI and
CNP vary similarly over time, as can be seen from
Fig. 3(a). Consequently, representative bandpassed
series of precipitation amount and CNP, Fig. 3(b)–
(d), and rate and CNP, Fig. 3(e)–(g), at the three
stations, are presented. Note that for Priest River,
Fig. 3(b) and (e), the amplitudes of precipitation
amount and rate are in phase with CNP. Logan,
Fig. 3(c) and (f), also exhibits similar behavior. As
we move to Tucson, Fig. 3(d) and (g), there appears
to be a considerable phase shift. For the stations in
between Tucson and Priest River, transitional beha-
vior was observed.

The coherence between the bandpassed series of
CNP and the precipitation amount at the southern-
most station (Tucson) is 0.7; for the station in the
middle (Logan) of the transect it is 0.78; while it is
0.84 for the northern-most station (Priest River),
respectively. The coherence with SOI was 0.81, 0.6
and 0.5, respectively at Tucson, Logan and Priest
River. The 90% significance level for coherence is
0.78, suggesting that SOI is important primarily for
the Southern stations in this frequency band. The
phase lag of the precipitation amount with CNP
increases, the coherence decreases moving south,
and with SOI the coherence increases moving south.
This observation is consistent with our expectation,
since CNP is a more direct measure of the atmo-
spheric flow (jet stream behavior) in the northern
end of the domain, while the SOI may more directly
measure the modulation of the atmospheric flow in the
lower latitudes, through tropical variability. Of
course, the SOI and CNP may reflect related modes
of atmosphere–ocean variability as well.

Finally, the spatial tendencies of the significant
spectral peaks in occurrence rate and precipitation
amount, and their coherence with CNP and SOI, are
presented in Figs. 4 and 5. There is an indication that
the lower frequency bands in the spectrum are pre-
ferred by the precipitation series in the northern part

of the region, but this is not a pronounced trend. No
major spatial trends with respect to the coherence of
the precipitation series with CNP are readily apparent,
i.e. the signature is present essentially across the region.
However, the precipitation series in the southern part
of the region appear to be more strongly correlated
with the SOI. As noted earlier, the rate series are more
often coherent with the atmospheric indices.

5. Conclusion

Spectral analysis was performed on time series of
precipitation amount and rates at seven stations along
a meridional transect from Arizona to Idaho. We find
consistent evidence for structured low-frequency
variability from the spectral analysis. Strong signals
in the 3–7 and 2–3 year periods were revealed from
the analysis, which seem to be consistent across time
series. These interannual signals are consistent with El
Niño southern oscillation (ENSO) and quasi-biennial
variability identified by others. Spectral coherence
between the precipitation amounts and rates with
CNP and SOI were also shown to be significant in
the above frequency range.

The high coherence between precipitation amount
and rates with SOI and CNP, and also the significant
frequencies in the ENSO band as suggested by the
analyses here, has directed our efforts into seeking
an understanding of the coherent spatial variability
of these variables at the chosen locations.

A number of authors (Ropelewski and Halpert,
1986 Ropelewski and Halpert, 1987; 1989; Cayan
and Peterson, 1989; Cayan and Webb, 1992; Kahya
and Dracup, 1994) have looked for connections
between El Nin˜o and La Niña events and precipita-
tion, temperature and streamflow series in the western
US, by focusing on first identifying El Nin˜o/La Niña
years in the record, and then looking for evidence of
anomalous behavior in the at site hydrological
variables over a time window, centered at each such
year. Such an approach is attractive, because it is
easily understood and communicated. One can even
visually present the results of such an analysis to show
spatial patterns quite effectively (e.g. Kahya and
Dracup, 1993). Such an analysis is justified for episo-
dic climate variability, which is one paradigm for
ENSO.
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Fig. 3. Bandpassed series of CNP (solid line) and: (a) SOI (dotted line); precipitation amount (dotted line) from data at (b) Priest River, ID; (c)
Logan, UT; (d) Tuscon, AZ; and precipitation occurrence rate (dotted line) from data at: (e) Priest River, ID; (f) Logan, UT; and (g) Tuscon,
AZ (the solid line in all these figures is the bandpassed series of CNP).
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Fig. 3. (continued).
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Fig. 4. Significant spectral peaks for each of the series analyzed. Station 0 corresponds to CNP, station 8 to SOI, and stations 1–7 are: PRR,
SNP, LOG, SNA, ALT, MIA and TUS.

Fig. 5. Coherence of each precipitation series with: (a) CNP; and (b) SOI. Stations 1–7 are: PRR, SNP, LOG, SNA, ALT, MIA and TUS.
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The multi-taper method-based approach presented
here, allows one to go beyond such analyses — one
can identify frequency bands where there is structure
in individual series, check to see if such structure is
coherent across the series analyzed and directly assess
the associated phase lags, and finally bandpass the
series at selected frequency bands to examine connec-
tions between the different time series. The most strik-
ing example of the utility of such an analysis is the
suggestion of a meridional (south to north) pattern in
the interaction of tropical atmospheric variability (as
represented by ENSO) with continental precipitation.
It is also interesting that the connections seem to man-
ifest themselves more clearly through a North Pacific
index of atmospheric circulation than the SOI directly.
Is this simply because the CNP index is defined at a
geographically closer location? Or, is there a sugges-
tion that the high latitude North Pacific atmospheric
flow is more directly modulated by the tropical varia-
bility? The latter is an area of active research.

Finally, it is worth noting that the ENSO phenom-
ena itself is nonstationary (Mann and Park, 1996;
Rajagopalan et al., 1997). The relative variance in
the 3–6 and 6–9 year frequency bands, varies over
the record. The lower frequency band (6–9 years) is
more important in the 1940–1970 period, when there
were relatively few El Nin˜o events, while the higher
frequency band (3–6 years) is more prominent in the
earlier and later period, when ENSO events have been
more frequent. Given, the limited length of the pre-
cipitation records used here, we chose to perform the
analysis using a single fixed period equal to the length
of the record, rather than doing a moving window
analysis to highlight the time varying nature of the
climatic oscillations. Wavelet or moving window
spectral analyses may be better descriptors of such
transitory oscillatory phenomena. However, statistical
significance testing is not yet well established for
these methods, and for planning purposes it may be
adequate to recognize the ‘average’ frequency of
occurrence of these periodic phenomena.
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