CVEN 3161-010

Mechanics of Materials I Fall 2008

- Instructor: Kaspar J. Willam; Office: ECOT 456, Tel: 2-7011
- Office Hrs: MWF 9:00-10:00am; e-mail: willam@colorado.edu
- Teaching Assistant: Mohammadreza Mostafa; TA Office: ECCE 164
- Office Hrs: Wednesday 4:00-6:00pm; e-mail: mohammadreza.mostafa@colorado.edu
- Lab Assistant: Volkan Isbuga; ECCE 1B52, e-mail: volkan.isbuga@colorado.edu
- Textbook: "Mechanics of Materials" Ray R. Craig, Jr., John Wiley & Sons, Inc., New York, 2nd Ed. 1999.
- Lectures: MWF 8:00-8:50am, ECCR 245
- Laboratory: Three lab sessions during semester (plus one lab for mixing concrete):
 - Lab Groups 1-3, L-011: W 1:00-2:00 pm, ECCE 1B52
 - Lab Groups 4-6, L-011 : W 2:00-3:00 pm, ECCE 1B52
 - Lab Groups 7-9, L-012 : W 3:00-4:00 pm, ECCE 1B52
- Assignments: Weekly Homework Problem Sets [10 out-of 11] (20%).
- Term-Projects: Three Individual Laboratory Reports (30%).
- Three Midterm Examinations: ECCR 245 Wednesday 8:00-8:50am: Sept. 24, Oct. 22, Nov. 19, 2008 (30%).
- Final Examination: ECCR 245, Wednesday, Dec. 17, 2008, 4:30 -7:00pm (20%).
- Disabilities: Students with disabilities who need academic accommodations should discuss options with the instructor during the first two weeks of class.

Course Outline

1. Introduction: August 25 - 27, 2008	Chapter 1
• Fundamental Concepts of Mechanics of Materials	1.1-1.2
• Review of Static Equilibrium	1.4
2. Stress and Strain, Design: August 29 - September 12, 2008	Chapter 2
• Normal Stress	2.1-2.2
• Extensional Strain	2.3
• Normal Stress-Strain Diagrams	2.4
• Elasticity and Plasticity	2.5
• Linear Elasticity, Hooke's Law and Poisson's Ratio	2.6
• Shear Stress and Shear Strain	2.7
• Stresses on an Inclined Plane	2.8
Generalized Hooke's Law (E, ν , G, K)	2.10
• Allowable Stress Design	2.12

3.	Axial Deformation: September 15 - 22, 2008	Chapter 3
	• Axial Deformation of Uniform and Non-Uniform Bars	3.1-3.3
	• Stiffness and Flexibility of Uniform Bars	3.4
	• Serial and Parallel Axial Bar Assemblies (Composite Bars)	3.5
	Midterm #1: September 24, 2008	
4.	Torsion: September 26 - October 8, 2008	Chapter 4
	• Elastic Torsion of Circular Bars	4.1-4.3
	• Serial and Parallel Torsion Bar Assemblies (Composite Torsion Bar)	4.4 - 4.5
	• Inelastic Torsion of Circular Bars	4.9
5.	Equilibrium of Beams: October 10 - 13, 2008	Chapter 5
	• Equilibrium using Free Body Diagrams	5.1-5.2
	• Differential Equilibrium Relationships	5.3
	• Interrelationship of Shear Force and Bending Moment Diagrams	5.4
6.	Stresses in Beams: October 15 - November 5, 2008	Chapter 6
	• Kinematics of Bending: Euler-Bernoulli Theory	6.1-6.2
	• Flexural Stresses in Elastic Beams	6.3
	• Allowable Stress Design of Beams, Elastic Section Modulus	6.4
	Midterm #2: October 22, 2008	
	• Bending of Composite Beams (Sandwich Beams)	6.5
	• Inelastic Bending of Beams, Plastic Section Modulus	6.7
	• Shear Stresses in Beams	6.8
	• Limitations of Elastic Shear Stress Formula	6.9
	• Shear Connectors in Built-Up Beams	6.11
7.	Deflections of Beams: November 7 - 17, 2008	Chapter 7
	• Elastic Moment-Curvature Relation	7.1
	• Differential Equations of Beam Deflection	7.2
	• Deflection Analysis by Direct Integration	7.3
	• Statically Indeterminate Deflection Problems	7.4
	Midterm #3: November 19, 2008	
8.	Transformation of Stress and Mohr's Circle: November 21 - Dec 5, 2008	Chapter 8
	• Transformation Relationships of Plane Stress	8.1-8.3
	• Principal Stresses and Maximum Shear Stress	8.4
	• Mohr's Circle for Plane Stress	8.5
9.	Stresses due to Combined Loading: December 8 - 12, 2008	Chapter 9
	• Thin-Walled Pressure Vessels	9.1-9.2
	• Stresses in Frame Members due to Combined Loading	9.4