
 1

A Coupled Elastoplastic Damage Model for Geomaterials 

M.R. Salari and S. Saeb 

RockSol Consulting Group, Inc., Boulder, Colorado 

K.J. Willam 

University of Colorado, Boulder 

S.J. Patchet and R.C. Carrasco 

Washington TRU Solutions, LLC, Carlsbad, New Mexico 

ABSTRACT 

A triaxial constitutive model is developed for elastoplastic behavior of geomaterials, 

which accounts for tensile damage.  The constitutive setting is formulated in the 

framework of continuum thermodynamics using internal variables.  The interaction of 

elastic damage and plastic flow is examined with the help of very simple constitutive 

assumptions:  (i) a Drucker-Prager yield function is used to define plastic loading of the 

material in combination with a non-associated flow rule to control inelastic dilatancy; (ii) 

elastic damage is assumed to be isotropic and is represented by a single scalar variable 

that evolves under expansive volumetric strain.  Thereby, positive volumetric 

deformations couple the dissipation mechanisms of elastic damage and plastic flow 

which introduce degradation of the elastic stiffness as well as softening of the strength.  

The constitutive model is implemented in the finite element program ADINA to 

determine the response behavior of the combined damage-plasticity model under 
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displacement and mixed control.  A number of load histories are examined to illustrate 

the performance of the material model in axial tension, compression, shear and confined 

compression.  Thereby incipient failure is studied at the material level in the form of non-

positive properties of the tangential material tensor of elastoplastic damage and the 

corresponding localization tensor comparing non-associative with associative plasticity 

formulations.  

INTRODUCTION 

As underground excavations age, large-scale fractures may develop in the surrounding 

rock mass, becoming visible only after several years.  The process of fracturing, however, 

starts immediately after excavation.  Micro-cracks form during the excavation process in 

zones within the rock mass that are subjected to considerable redistribution of the initial 

stress state.  As the micro-cracks grow, their distribution in the rock mass results in 

progressive deterioration of the strength and stiffness properties, and possible loss of 

stability of the surfaces of excavation.  Micro-fracturing also has consequences on the 

hydrological performance of underground openings since it affects the porosity and 

permeability of the surrounding rock.  Hence realistic geomaterial models not only of 

strength but also of stiffness and ductility degradation under triaxial conditions are a 

critical element to assess the long term performance of rock masses under excavations.  

For background information the reader is referred to seminal geomaterial models based 

on elastoplasticity, see Dafalias [1986], Desai [2001], Nova [1992], Borja and Tamagnini 

[1998], on hypoplasticity, see Darve [1991], Kolymbas [1991], and on continuum 

damage mechanics, see Mazars and Pijaudier-Cabot [1989], Dragon and Mroz [1979], 

Yazdani and Schreyer [1988], and Carol, Rizzi and Willam [2001], to name a few.  
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Among recently proposed models for rock materials, the contributions by Shao et al. 

[1998], Nawrocki and Mroz [1999], Lee and Fenves [1998], and Hansen, Willam, K. and 

Carol  [2001]  are of direct interest to this paper.   

Shao et al. [1998] developed a constitutive model to consider coupling between plastic 

deformations and damage induced by micro-cracks.  The formulation was proposed to 

describe the salient features of hard clays, such as inelastic deformation, dilatancy, 

deterioration of elastic stiffness moduli and deformation-induced anisotropy.  The plastic 

model was coupled with damage assuming that damage is induced by growth of micro-

cracks related to dilatant volumetric deformation.  Therefore, it was assumed that the 

energy due to tensile elastic and plastic volumetric strain is mainly responsible for the 

evolution of damage in tension as well as in compression. 

In this paper, a constitutive model is developed for elastoplastic behavior of geomaterials, 

which accounts for tensile damage.  The constitutive setting is formulated in the 

framework of continuum thermodynamics using internal variables.  To illustrate the 

coupling of plasticity and elastic damage a Drucker-Prager yield function is used for 

plastic loading of the material and a non-associated flow rule is employed to control 

inelastic dilatancy.  Damage is assumed to maintain isotropic elastic behavior and is 

represented by a scalar damage variable that evolves under volumetric expansion.  The 

constitutive model is implemented in the finite element program ADINA [2001], and a 

number of load histories are examined to study the performance of the model.  Although 

rate effects have been included in the geomaterial model, only the rate independent part 

of the constitutive formulation will be discussed in this article.  Thereby it is understood 

that failure analysis of realistic initial boundary value problems must address well-
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posedness of the overall computational formulation, see Valanis and Peters [1996].  To 

set the stage, failure indicators are examined in the form of singularity diagnostics when 

the tangential elastoplastic damage tensor indicates loss of stability in the sense of non-

positive second order work and loss of uniqueness in the sense of non-positive, but real 

eigenvalues, see Willam [2002].  In addition, the corresponding acoustic material tensor 

is studied with regard to loss of positive wave speeds synonymous with localization and 

the formation of spatial discontinuities of the kinematic fields. 

THERMODYNAMICS FRAMEWORK 

In this section the coupled elastoplastic damage material model is formulated within the 

framework of continuum thermodynamics using internal variables.  Assuming an 

isothermal process, the Helmholtz free energy is considered to depend on three state 

variables: 

 ),,( De κψψ ε=  (1) 

where eε  denotes the elastic strain tensor and κ  and D  the scalar-valued internal 

variables of plasticity and damage.  Assuming that the Helmholtz free energy may be 

additively decomposed into elastic and plastic components: 

 ),(),( DD pee κψψψ += ε   
  (2) 

which are however both dissipative because of elastic damage which couples both energy 

contributions.  To ensure that the second principle of thermodynamics is satisfied, the 

local Clausius-Duhem’s inequality requires that the reduced dissipation inequality holds: 

 0: ≥−ψ&&εσ  (3) 
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Evaluation of this inequality involves the time derivative of the Helmholtz free energy: 
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Substitution into the reduced dissipation inequality results in:  
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where the additive decomposition into elastic and plastic strain contributions has been 

used with pε&  denoting the plastic strain tensor.  Since the inequality (5) must hold for 

any value of ε& , pε& , κ& , D&  the Coleman relations yield the constitutive expressions: 
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and the thermodynamic conjugate forces for plasticity and damage: 
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Assuming that the plastic and damage potential functions pg and dg  are functions of the 

thermodynamic forces and the scalar damage variable we have: 

 );,( DKgg pp σ=  (9) 

 );( DYgg dd =  (10) 

where pg is also a function of stress in order to render the tensorial format for the rate of 

plastic strain.  Appropriate evolution laws characterize the rate of change of the internal 

variables as:  
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Hereby 0≥λ&  and 0≥µ&  denote the plastic and damage multipliers, respectively.  

Considering ),,( DKff pp σ=  for plastic loading and ),( DYff dd =  for damage 

initiation, respectively, the two consistency conditions,  
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enforce persistent elastoplastic and damage behavior in the form of two coupled 

equations which determine the relative magnitude of plastic vs. damage dissipation.  

PLASTICITY FORMULATION 

For the sake of simplicity the pressure-sensitive Drucker-Prager model is used to describe 

the plastic response behavior, where the plastic loading function, 

 kDJIDef pp )1(),,( 21 −−+= ασ   
 (15) 

has been modified to consider the effect of damage in the cohesive resistance.  Hereby, 

kkI σ=1  denotes the first invariant of the `nominal’ stress tensor σ , ijij ssJ 2
1

2 =  the 

second invariant of the deviatoric stress tensor, pe  the effective deviatoric plastic strain, 

and D  the scalar-valued damage parameter.  The two Drucker-Prager parameters α  and 
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k  are a measure of internal material friction and cohesion, respectively, which may be 

expressed in terms of the uniaxial tensile and compressive strength values as: 
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Traditionally, damage is introduced in the plastic loading function in the form of 

effective rather than nominal stress.  This is entirely equivalent to the effect of damage on 

the cohesive strength in Eq. (15), when the loading function is divided by )1( D− . 

Assuming that plastic hardening depends only on the equivalent deviatoric plastic strain 

pe  rather then the total plastic strain, the material parameters α  and k  are expressed in 

terms of the exponential functions proposed by Shao et al. [1998]: 

 peb
mm e 1)( 0

−−−= αααα   
 (17) 
 peb

mm ekkkk 2)( 0
−−−=   

 (18) 

where 0α , mα , 0k , and mk  are the initial and maximum values of the frictional and 

cohesive parameters α  and k , respectively.  The equivalent deviatoric plastic strain pe  

is defined in terms of the Odquist parameter which is traditionally used in J2-plasticity to 

express plastic dissipation in terms of von Mises stress and the equivalent palstic strain 

rate: 

 ∫=
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Here pde denotes the rate of deviatoric plastic strain.  Note, the volumetric part of the 

plastic strain rate does not affect plastic hardening, instead it will be used below to 

mobilize damage and henceforth softening rather than hardening. 

To determine the direction of plastic strain rate, the following modification of the 

Drucker-Prager loading function is used as plastic potential: 

 21),( JIeg pp += βσ  (21) 

Here the dilatation parameter β  is used to control inelastic volume expansion.  Adopting 

a non-associated flow rule: 
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the rate of change of mean plastic strain p
mε  and deviatoric plastic strain pe  is defined 

by: 
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Plastic consistency assures that the stress state remains on the yield surface during 

persistent plastic loading, i.e. 
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The rate of change of the state of stress in (6) involves two terms in the presence of 

damage: 

 eded εEεEσ :: &&& +=  (26) 

where dE  denotes the secant tensor of elastic damage and eε  the elastic strain tensor.  In 

the case of single scalar format of isotropic damage the degraded elastic stiffness tensor 

reads,  

 0)1( EE Dd −=   
 (27) 

Differentiating and substituting the results into (26) one obtains: 
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Introducing the deviatoric plastic strain rate p
ije&   (24) into (20), the equivalent deviatoric 

plastic strain rate pe&  reduces to: 
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Under strain control, i.e. for a given rate of strain the internal rate of change of the plastic 

and damage  λ&  and D&  determine together with their thermodynamic forces the 

magnitude of plastic and damage dissipation, respectively. 

DAMAGE FORMULATION 

In rock and concrete materials, damage is induced by micro-cracking which manifests 

itself at the macroscopic level in the form of expansive volumetric strain.  Consequently, 

the tensile contribution of volumetric strain energy is mainly responsible for the 

evolution of damage.  Following the proposal by Shao et al [1998], the volumetric part of 

the thermodynamic damage force drives the evolution of damage in the form:  

 p
vm

e
vv dcKY

p
v εσε

ε
∫+=
0

20
2
1   

 (31) 

where 
 ccc =  for 0<e

vε  

 tcc =  for 0>e
vε  

and where 0K  is the undamaged bulk modulus.  The plastic damage parameter c  

controls the amount of coupling which the dilatant volumetric plastic energy dissipation 

contributes to the thermodynamic damage force.  The bracket x  around the argument 

denotes the McAuley discontinuity function, i.e. x = x  when 0>x  and x =0 

otherwise.  Since damage in tension is very different from that in compression, different 

values  tc  and cc  are introduced depending on the sign of the volumetric elastic strain.   
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The energy-based damage function defines damage initiation in the form of the loading 

function: 

 )(),( DrYDYf vv
d −=   

 (32) 

where the volumetric thermodynamic force represents the energy demand and where the 

energy resistance function )(Dr  is to be a power function, see Carol et al [2001]: 

 1)1()( −−= pDrDr o   
 (33) 

Here or designates the modulus of resilience, i.e. the volumetric strain energy at peak 

stress in uniaxial tension as shown in Figure 1, while the exponent p  represents the ratio 

between the modulus of resilience and the modulus of toughness: 
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Figure 1 shows the uniaxial tension test and the physical meaning of or  and fg , 

whereby the latter may be interpreted as volumetric fracture energy release per unit 

volume.  
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Figure 1.  Uniaxial stress-strain curve 
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Damage consistency assures that the stress state satisfies the damage function under 

persistent damage.  Taking partial derivatives of the damage function with regard to the 

independent variables the consistency condition involves,  
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Considering the definition of the volumetric thermodynamic force in (31), its rate of 

change reads: 
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Decomposing the volumetric strain into elastic and plastic parts and substituting the 

volumetric plastic strain rate into (36) results in: 
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where I  is the 2nd order identity tensor and ε&  is the rate of strain tensor.  Finally, 

substituting (37) into (35) results in the second consistency condition analogous to (29): 
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Considering (30) and (38) these are to simultaneous equations which determine the 

magnitude of the plastic and damage multipliers.  Formally, the two equations for the 

unknown multipliers may be written in matrix notation as  
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Thereby it is understood hat the two multipliers can be only positive or zero depending 

on the loading conditions in analogy to multi-surface plasticity models.  In other terms, if 

one of the two multipliers turns out to be negative then the dissipation of this process is 

arrested while the other is active and vice versa.  In summary, the loading conditions 

require that the coefficient matrix is positive, whereby 011 >A  and 022 >A  for plastic 

loading separately from damage, and where 21122211 AAAA >  must hold for combined 

loading together with,  
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Hereby the individual coefficients in the matrix relations are defined in (30) and (38).  

Solution of the two simultaneous equations leads to an explicit form of the plastic 
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










∂
∂

−
∂
∂









∂
∂

−
∂

∂
+

∂
∂

−
∂

∂
∂

∂









∂
∂

−
∂

∂
+

∂
∂

=

11

00

00

::3
3

1::

:::::

I
gc

I
gK

D
ffR

e
fgf

K
D
ffRf

p

m

p
e
v

p
e

p

dp

pp
d

p

e
v

p
e

p

d
d

p

σε

ε
λ

εE
σσ

E
σ

εIεE
σ

εE
σ

&&

&  

 (41)  



 14

Note strain control of the plastic multiplier introduces an additional term in the numerator 

as compared to classical plasticity and in the denominator which is augmented by an 

additional coupling term due to damage. 

Vice versa, the rate of change of the damage variable is according to (38)  
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Note the first term on the rhs is the traditional damage evolution expression under strain 

control while the second term on the rhs arises due to coupling between the damage and 

the plastic dissipation process. 

ELASTOPLASTIC DAMAGE TANGENT OPERATOR 

The elastoplastic damage tangent operator is obtained by substituting the rates of the 

internal variables D&  and λ&  from (38) and (41) into the constitutive rate equation (28): 
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  (44) 

In the special case when no damage is mobilized, (44) reduces to the traditional 

elastoplastic tangent operator: 
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In the absence of plasticity, the elastic damage tangent operator reduces (44) to: 
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In general, the elastoplastic damage operator of (44) is non-symmetric, as is the case of 

elastoplasticity and elastic damage.  Loss of plastic symmetry is due to the non-

associated flow rule, while loss of damage symmetry results from the fact that only the 

volumetric part of the strain tensor contributes to the damage formulation. 

STRESS INTEGRATION 

Numerical implementation of the model requires integrating the rate form of the 

constitutive relations in the finite time step ttt nnn −=∆ ++ 11 .  Given the material 

response at time tn  and a finite strain increment ε∆+1n , the objective is to determine the 

unknown external and internal state variables σ1+n , ε1+n , pn ε1+  and Dn 1+  at time 

tn 1+ .  To this end, the fully implicit Euler backward integration method is used where the 

stress tensor at time tn 1+  is updated: 

 σσσ ∆+= ++ 11 nnn   
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 (47) 

by the finite stress increment σ∆+1n : 
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 (48) 

In scalar damage, progressive damage of the elastic stiffness involves: 
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The reduction of stiffness is controlled by the change of the scalar damage variable, 
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Substituting (50) and using the strain decomposition results in the traditional elastic 

predictor-plastic corrector format of computational plasticity, see Simo and Hughes 

[1998], 
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Here the trial stress trialn σ1+  is defined explicitly as: 

 εEσσ ∆+= ++ 11 : ndnntrialn   
 (52) 

A graphical representation of (51) for uniaxial loading is shown in Figure 2 when the trial 

stress trialn σ1+  is explicitly determined in terms of the damaged stiffness dn E .  However, 

because of the progressive stiffness degradation from dn E  to dn E1+ , the trial stress 

reduces by a factor of ( ) ( )DD nn −− + 11 1 .  The total stress σ1+n  is therefore calculated 

by correcting the damaged trial stress for the plastic deformation increment pn ε∆+1 .  In 

this paper, when both plasticity and damage processes are active, the damaged trial stress 
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and plastic correction are both determined implicitly by solving a simultaneous system of 

nonlinear equations in terms of the plastic multiplier λ∆+1n  and the damage increment 

Dn ∆+1 . 
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Figure 2.  Schematic representation of inelastic damage process 

PERFORMANCE OF THE MODEL 

For the purpose of illustration, the coupled elastoplastic damage model was implemented 

in the finite element analysis code ADINA.  The performance of the constitutive 

formulation model was evaluated for four different load scenarios including uniaxial 

tension, uniaxial compression, simple shear and confined compression.  The results will 

be discussed in the subsequent section. 
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There are twelve material parameters needed to calibrate the elastic, plastic and damage 

behavior of the geomaterial model.  Representative values for sandstone and normal 

strength concrete are summarized in Table 1.   

(a) The undamaged elastic state of the isotropic material is specified by the elastic 

modulus 21500=oE  MPa and Poisson’s ratio 192.0=ν . 

(b) The plastic properties involve the initial and maximum values of the friction and 

cohesion parameters of the Drucker-Prager yield function: 23.00 == mαα , 

27.60 =k  MPa and 16.8=mk  MPa.  Hereby the parameter 50002 =b  is used for 

specifying the exponential hardening rule of the cohesion parameter k in (16) and 

(17), while no hardening is considered for the friction parameter α .  To control 

dilatancy, a non-associated flow rule is used where the dilatancy parameter is 

115.0=β .   

(c) The plastic damage parameters in (31) which define the level of plastic 

volumetric work in the thermodynamic force differ in tension from compression, 

and are set to 0.1=tc  and 1.0=cc , respectively.  Finally, the energy capacity in 

the damage resistance function is defined by the exponent 01.0=p  in (34) which 

specifies the ratio of the modulus of resilience to the modulus of toughness.  Note 

that the modulus of resilience  or  in the damage resistance function is not an 

independent material parameter.  It corresponds to the strain energy content at 

peak stress of the uniaxial tension test, which coincides with the yield point in 
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tension.  Hence it can be determined from the friction and cohesion parameters of 

the Drucker-Prager yield function.   

Calibration of the geomaterial model can be performed through a series of uniaxial 

tension and compression as well as triaxial compression tests.  The modulus of elasticity 

oE and Poisson’s ratio ν  can be determined from the uniaxial compression test, while 

strength data from uniaxial and triaxial compression tests can be used to determine the 

friction and cohesion parameters.  Note, there are only two strength parameters which 

may be used to fit either the strength in triaxial compression or in tension-compression. 

For more comprehensive descriptions the current plasticity model would have to be 

extended along the line of the 3-parameter model of Menetrey & Willam [1995] which 

also accounts for the effect of the third invariant which is quite pronounced in concrete 

materials.  Finally the damage properties of the material need to be determined from a 

number of cyclic tests in tension and compression. 

Table 1.  Material Parameters 

Elasticity Plasticity Damage 
0E  

(MPa) 

ν  0α  mα  1b  0κ  

(MPa) 
mκ  

(MPa) 
2b  β  tc  cc  p  

21500 0.192 0.23 0.23 0 6.27 8.16 5000 0.115 1.0 0.1 0.01 
 

RESPONSE PREDICTIONS 

In what follows the triaxial material behavior is analyzed for different load histories 

under mixed displacement-traction control (full displacement control in the case of 

simple shear).  To this end the response of single hexahedral element is examined under 
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uniform load conditions which involve partial unload-reload histories to illustrate the 

degradation of stiffness due to progressive damage.  The main response is plotted in 

terms of the axial stress-strain components in tension and compression and the in-plane 

shear components in the case of the simple shear experiment. 

The axial response behavior of the geomaterial model under uniaxial tension is shown in 

Figure 3.  The response depicts a linear elastic region which is followed by a sharp 

deterioration of strength due to activation of the damage process.  Observe the significant 

degradation of the elastic stiffness due to tensile damage which increases with 

progressive softening.  

Figure 4 illustrates the performance of the geomaterial model under uniaxial 

compression.  Three distinctive regions can be observed.  Initially the material behaves 

linearly elastically until initial yield is reached.  Thereafter the material shows plastic-

hardening which is accompanied by plastic volume expansion.  When the plastic 

dilatation reaches a critical limit defined by the damage resistance of the material, the 

damage process is mobilized resulting in large deterioration of strength down to a 

residual strength level as well as in progressive damage of the elastic stiffness in the 

softening regime.   

Figure 5 illustrates the performance of the geomaterial model under simple shear.  In 

analogy to uniaxial compression the linearly elastic shear response id followed by plastic-

hardening which is accompanied by plastic volume expansion.  When the plastic 

dilatation reaches a critical limit defined by the damage resistance, the damage process is 
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mobilized.  This results in a significant deterioration of strength which is accompanied by 

progressive damage of the elastic stiffness in the softening regime.   

In order to study the performance of the geomaterial model under confined conditions, 

two triaxial tests were performed at confining stresses of p=-4 MPa and p=-8 MPa.  The 

results are compared with that of uniaxial compression in Figure 6.  They show that the 

geomaterial model exhibits a large increase of strength with increasing confinement. 
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Figure 3.  Uniaxial tension test 
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Figure 4.  Uniaxial compression test 
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Figure 5.  Simple shear test 
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Figure 6.  Confined compression test 
 

FAILURE PREDICTIONS 

The issue of well-posedness of the related initial boundary value problem is closely 

connected to the positive behavior of the tangential material properties and the associated 

localization tensor.  In fact, positivity of the symmetrized material operator provides a 

sufficient condition for material stability in the sense of positive second order work 

density, 0::2 >= εEε && epdWd .  At the other hand, positivity of the non-symmetric 

material operator provides a sufficient condition for uniqueness in the sense of 

0)det( >epdE .  Considering discontinuous bifurcation in the form of localization it is 

well understood that non-symmetric localization operators NENQ ⋅⋅= epdepd  often 

exhibit a singularity in the ascending part of the stress-strain relationship when the 

tangential material stiffness is still positive, see Rudnicki and Rice [1975].  In contrast, 
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symmetric localization operators exhibit a singularity only when the underlying tangent 

material law turns non-positive.  

Consequently, the different material failure diagnostics adhere to the following hierarchy:  

(1) loss of stability of the symmetrized material operator, when 0)(min =epd
symEλ  

(2) loss of ellipticity of the non-symmetric localization tensor, when 0)(min =epdQλ  

(3) loss of uniqueness of the non-symmetric material operator, when 0)(min =epdEλ  

In what follows, we investigate the different failure diagnostics for the load histories 

examined before.  

Figure 7 illustrates the variation of the lowest eigenvalue of the symmetric and non-

symmetric tangential material operators under uniaxial tension.  The figure clearly 

indicates the positive definiteness in the ascending portion of the tensile response and the 

drastic sign change of eigenvalues in the softening regime.  Thereby it is understood that 

the minimum eigenvalue of the tangential material law is a manifestation of the second 

order work density, either stored or released, depending on its sign.  Thereby the 

corresponding eigenvector would indicate the strain rate associated with the failure mode 

when 0)(min <epdEλ .  We note the lower bound of the symmetrized tangent operator 

when compared to the non-symmetric operator.  This property is a result of the so-called 

Bromwich bounds of linear algebra.  Furthermore, we observe the strong influence of the 

softening slope on the negative value of the energy release rate which decreases 

significantly near the tail of the experiment.   
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Figure 8 illustrates the corresponding localization result when the tensile stress reaches 

the peak value in uniaxial tension.  At this stage the normalized determinant of the 

localization tensor, 0)det()(det <eepd EE , reaches a minimum value at 180,0=θ  

degrees.  These two angles define a single  normal vector to the failure plane with regard 

to the major principal axis indicating mode I cracking in uniaxial tension.  Note that the 

large negative value of the normalized determinant exceeds the corresponding positive 

value of the elastic acoustic tensor by a factor of 2.5.  This indicates that both, the 

associative as well as the non- associative localization tensors indicate discontinuous 

bifurcation, Rudnicki [2002], and hence formation of a discontinuity in the solution 

domain from a material zone subject to loading to a material zone subject to unloading. 
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Figure 7.  Lowest eigenvalue vs. strain for uniaxial tension test 
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Figure 8.  Non-symmetric localization analysis of uniaxial tension test comparing 
associative with non-associative flow rules 

Figures 9 and 10 illustrate the analogous features of the geomaterial model in uniaxial 

compression.  In this case we note the loss of positive behavior of the symmetrized 

material stiffness in the hardening regime and again the drastic change from energy 

storage to energy release when the response reaches the peak stress level and the onset of 

softening.  A snap shot of the localization properties at that instant is shown in Figure 10. 

It indicates discontinuous bifurcation when the associative localization operator is 

considered, but not for the non- associative one.  In other terms, loss of strong ellipticity 

is indicated by the negative value of the associative localization tensor, while loss of 

ellipticity in the form of zero values of the determinant is not being reached by the non- 

associative localization tensor.  In the former case the normal vectors of the localized slip 

planes tend to form at two distinct  angles θ = ~40 and ~140 degrees with regard to the 

major principal axis.  Thereby the associative localization diagnostics provide a lower 

θ 
N 
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bound of the non- associative localization properties which remain positive.  In other 

terms, the cylindrical stress states of uniaxial and triaxial compression prevent 

localization in spite of the negative material properties due to softening and non-

associated plastic flow, see also Kang and Willam [1999] for this surprising observation.   
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Figure 9.  Lowest eigenvalue vs. strain for uniaxial compression test 
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Figure 10.  Non-symmetric localization analysis of uniaxial Compression test 

comparing associative with non-associative flow rules 
 

Figures 11 and 12 illustrate the analogous features of the geomaterial model in simple 

shear.  In this case we note again the loss of positive behavior of the symmetrized 

material stiffness in the hardening regime and the drastic change from energy storage to 

energy release when the response reaches the peak stress level and the onset of softening.  

A snap shot of the localization properties at that instant is shown in Figure 12 which 

indicates discontinuous bifurcation when both the associative as well as the non-

associative localization operators are considered.  In this case localization takes place at 

two distinct planes the normals of which are oriented at the  angles θ = ~39 and ~141 

degrees with regard to the major principal axis.  Thereby the directional properties of the 

localized failure planes are independent of the flow rule, while the onset of localization 

and the transition from continuous to discontinuous bifurcation differ strongly between 

the associative and the non-associative failure diagnostics.  

θ 
N 
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Figure 11.  Lowest eigenvalue vs. shear strain for simple shear test 
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Figure 12.  Non-symmetric localization analysis of uniaxial simple shear test 
comparing associative with non-associative flow rules 

SUMMARY AND CONCLUSION 

θ 
N 
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A triaxial model was presented for geomaterials based on two interacting dissipation 

mechanisms, one for elastoplastic behavior and one for elastic damage.  Coupling of the 

two dissipation mechanisms was introduced and controlled by volumetric expansion.  

The isotropic geomaterial model involves twelve parameters, two define the initial elastic 

stiffness, seven hardening and softening parameters describe non-associated plastic flow, 

and three characterize the evolution of scalar damage.   

Four load histories were examined in the example problems to illustrate the performance 

of the geomaterial model.  The failure diagnostics revealed a number of important issues 

related to the loss of positive tangent properties and the formation of discontinuous 

failure modes due to localization beyond which uniform deformations cease to exist.  

Contrary to the destabilizing effect of associative vs. non-associative flow formulations, 

the mode of localized failure showed little effect of the flow rule.  Opposite to the 

localization tendencies during softening in uniaxial tension and simple shear, the 

localization properties remained remarkably positive in uniaxial compression in spite of 

softening and non-associative plastic flow. 
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NOTATION 

The following symbols are used in this paper: 

cc , tc  plastic participation factors in damage force 

D  scalar damage parameter 

0E  initial elasticity tensor 
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dE  secant tensor of elastic damage 

edE  tangential elastic damage operator 

epE  tangential elastoplastic operator 

epdE  tangential elastoplastic damage operator 

pe&  deviatoric plastic strain rate 

pe  equivalent deviatoric plastic strain 

cf , tf  uniaxial compressive and tensile strengths 

df  damage function 

pf  plastic loading function 

dg  damage potential function 

fg  volumetric fracture energy release per unit volume 

pg  plastic potential function 

I  2nd order identity tensor 

1I  first invariant of the nominal stress tensor 

2J  second invariant of the nominal deviatoric stress tensor 

K  thermodynamic conjugate force for plasticity 

0K  undamaged bulk modulus 

k  Drucker-Prager cohesion parameter 

0k , mk  initial and maximum values of k  

p  ratio between modulus of resilience and modulus of toughness 

r  resistance function 
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or  modulus of resilience 

s  deviatoric strain tensor 

Y  thermodynamic conjugate force for damage 

vY  volumetric thermodynamic conjugate force for damage 

α  Drucker-Prager friction parameter 

0α , mα  initial and maximum values of α  

β  dilatation parameter 

eε  elastic strain tensor 

pε  plastic strain tensor 

p
mε&  mean plastic strain rate 

e
vε  volumetric elastic strain 

κ  internal variable of plasticity 

λ&  plastic multiplier 

µ&  damage multiplier 

σ  nominal stress tensor 

mσ  mean nominal stress 

ψ  Helmholtz free energy 

eψ  elastic component of Helmholtz free energy 

pψ  plastic component of Helmholtz free energy 


