. -~ = . ;
Temes. TLEIE Zosadou sla loutiwg  SulllaCu Ll

’:-u..l':-ahul-,.Lq". o 'r_,..“w.:‘y_tzlj. w“ TeMES hrﬂﬁmg
' o

/e.'w 43

COMSTITUTIVE MODEL FOR THE TRIAXIAL BEHAVIOUR OF COMNCRETE
Stoffmadell fur das mehrachsiole Verhalten von Beton
Modéle de Comstitution pour le Comportement Trioxial du Béton

K.J. Willam E.F. Warnke

Ph.D., Project Leader Dipl.=lng., Research Associate
Institut fur Statik und Dynamik der Institut fir Statik und Dynamik der
Luft= und Raumfahrtkonstruktionen Luft- und Raumfohrikenstruktionen
University of Stuttgart University of Stuttgary

Dedicoted to the &0th birthday of Professer D1, Drs.h.c. J.H. Argyris.

RS



SUMMARY

This paper describes different models for the failure surface and the constitutive behaviour
of concrete under trioxial conditions. The study serves two objectives,. the working stress
design and the ultimate load analysis of three~dimensional conerete components.

In the first part o three porometer failure surface is developed for concrete subjected to
triaxial loading in the tension and low compression regime . This model is subsequently refined by
odding two additional paremeters for describing curved meridians, thus extending the range of appli=
cation to the high compression zone.

In the second part two constitutive models are formulated for elastic perfectly plastic be-
haviour in compression and elostic perfectly brittle behaviour in tension. Based on the normality
principle, explicit expressions are developed for the inelostic deformation rate and the correspon-
ding incremental stress=strain relation . Thus these models can be readily applied to ultimate load
analysis using the initial load technique or the fangential stiffness method.

ZUSAMMENFASSUNG

Die vorliegende Untersuchung behandelt verschiedene dreiachsiale Modelle fur die Ver~
sagensflache und das Stoffverhalten von Beton. Zielsetzung ist die Gebrauchslast= und Grenzlost-
analyse von drei-dimensionalen Betontragwerken.

Im ersten Teil wird ein drei Parometermode |l entwickelt fur die dreiachsiole Versogens—
flache von Beton im Zug- und niedrigen Druckbereich. Fiir Anwendungen im hohen Druck-
bereich wird dieses Modell durch zwei zusdtzliche Porameter erweitert, um die Kriimmung
in der Meridianrichtung zu erfassen.

Der zweite Teil behandelt zwei Stoffmodelle fur ideal plastisches Verhalten im
Druckbereich und ideal spriides Verhalten im Zugbereich. Basierend auf dem Normalitétsprinzip
werden Ausdriicke fur die nicht-elastischen Verformungssnderungen und'die entsprechenden inkre-
mentellen Spannungs-Dehnungsgesetze aufbereitet, die zur Grenzlastberechnung nach dem Ver-
fahren der Anfangslasten oder der tangentialen Steifigkeit Verwendung finden.

RESUME

Il s'agit d'étudier différents modeles triaxiaux pour la surface de rupture et le comporte-
ment du béton. On cherche & analyser la charge de service et la_charge limite de structures en
béton & trois dimensions.

Dans lo premidre partie, on développe un modele & 3 parametres pour la surface de rupture
du béton soumis & des charges triaxiales dans le domaine de traction et de foible compression. Ce
modele est ensuite amélioré par I'introduction de deux nouveaux parametres pour étendre le domaine
d'application au cas de la haute compression (on tient ainsi compte de la courbure de la surface de
rupture en direction du méridien).

Dans la seconde partie, on développe deux modéles de comportement pour le cas de com-
portement lastoplastique parfait en compression et &lastique fragile parfait en traction. D'apras
le principe de normalité, on établit des expressions explicites pour les taux de déformation inélas-
tique et pour les lois extensions- contraintes incrémentales correspondantes, qui peuvent dire
facilement appliquées au calcul de la charge limite en faisant appel & la technigque de la charge
initiale ou & la méthode de la rigidité tangentielle.



1. INTRODUCTION

Over the lost two decades o profound change has taken place with the appearance of digital
computers and recent odvances in structural analysis [] 1 [2}, [31 The close symbiosis between
computers and structural theories was instrumental for the development of large scale finite element
software packages [4] which found o wide range of application in many fields of engineering
sciences.

The high degree of sophistication in structural analysis has clearly left behind many other
disciplines,one of them being the field of material science. The proper description of the relevant
constitutive phenomena has posed o mojor limitation on the analysis when applied to complex ope-
rating conditions.

In the following o constitutive model is presented for the over lood and ultimate load ana-
lysis of three~dimensional concrete structures, e.g. Prestressed Concrete Reactor Vessels and Con-
crete Dams. Considering the size of finite elements in a typical ideclization one is clearly dealing
with material behaviour on the continuum level, in which the micro structure of plain and rein-
forced concrefe components can be neglected. This scale effect of the analysis allows o macro-
scopic point of view according to which material phenomena such as cracking con be simulated by
the behaviour of an equivalent continuum.

The objective of this study is twofold: First o mathematical model is developed for the
description of initial concrete foilure under triaxial conditions. Subsequently, this formulation is
applied to construct @ constitutive model for the over load ond ultimote load analysis of three-
dimensional concrete structures. Alternatively, the failure surface can be applied to working stress
design using relevant safety philosophies. )

In the first part a three porameter model is developed which defines o conical failure sur=-
face with non-circular base section in the principal stress space, thus the strength depends on the
hydrostatic as well os deviatoric stress state. The proposed failure surfoce is convex, continuous
ond has continuous gradient directions furnishing a close fit of test data in the low compression range,
In the tension regime the model may be augmented by o tension cut-off criterion. This basic formu-=
lation is refined in Appendix |l by a five parameter model with curved meridians which provides a
close fit of test data olso in the high compression regime.

Subsequently, o materiol model is constructed based on an elastic perfectly plastic formu-
lation which is augmented by o brittle failure condition in the tensile regime. In this context -
equivalent constitutive constraint conditions are developed, bosed on the "normality” principle,
which can be readily applied to the finite element analysis via the concept of initial loods.

In the pest considerable experimental evidence has been gathered which could be used for
the construction of a trioxial failure envelope of concrete. However, most of the dote were ob -
tained from tests with proportional loading and uniform stress or strain conditions which were distorted
by unknown boundary layer effects. For the ultimate load onalysis via finite elements these two
ossumptions are clearly invalid, The non-linearity is responsible for local unloading even if the
structure is subjected to monotenically increasing stresses. Moreover, the action of a curved thick-
walled structure is controlled by non-uniform stress distributions, even if global bending effects and
local stress concentrations are neglected for the time being. However, for obvious reasons it is
customary to assume that test results from uniform stress= or strain experiments can be used to predict
the failure behaviour of structural components subjected to non-uniform stress or strain conditions.
One should be aware that this fundamental hypothesis hos little justification, except that it is ot
present the only realistic approach for constructing o phenomenological constitutive law. The
actual mechanism of crack initiation and crack propagation could in fact differ fundamentally
between uniform and nen-uniform stress distributions.

Considerable test data has accumuloted on the multioxial foilure behaviour of mortar and
concrete specimens subjected to short term loads. The experimental results can be classified into
tests in which either two or three stress components are varied independently. To the Ffirst category
belong the classical triaxiol compression tests on cylindrical specimens (triaxial cell experiments)
[5 }, [6], [7]. [3],' [ 9] and the bioxial tension-compression tests on hollow cylinders []DJ,



[H . In oddition, there is the class of bioxial compression and tension-compression tests on slabs
2], [33], [14] , 151, [16], [I?], [18], [197]. The second category contains experi=
ments in which cubic specimens are subjected to arbitrary load comhbinations [20], [2]] . Some
of these types of tests are presently still being processed [22] ; [23] ’ [24] :

So far few attempts have been made to utilize this experimental evidence for constructing,
a mathematical model of the triaxial failure behaviour of concrete. A comprehensive study of this
problem was undertaken in 25], for which similar conclusions were reached in [26], [27 .
All three models fall into the class of pyramidal failure envelopes which hove been examined
extensively within the context of brittle material models as generalizotions of the Mohr=Coulomb
criterion {28] . In the same publication different modifications of the Griffith criterion ore
discussed, which have also been applied in '[20] to model the failue surface of cubic mortar
specimens in the tension-compression regime.

None of these previous studies on failure envelopes was directed towards the non-lineor
analysis of concrete structures. _To this end ¢ number of rather simple material formulations were
reviewed in [29], [30], [31] and opplied to the ultimate load analysis of different concrete
structures.

2. TRIAXIAL FAILURE SURFACE

In the following o mathematical model is developed for the triaxial foilure surface of con-
crete type materials. Assuming isotropic behaviour the initial failure envelope is fully described
in the principal stress space.

Figure 1 shows the triaxial envelope of concrete type materials. The failure surface is
basically a cone with curved meridians and @ nen-circular base section. The limited tension
capacity is responsible for the tetrahedral shape in the tensile regime, while in compression a
cylindrical form is ultimately reached.

For the mathematical model only a sextant of the principal stress space has to be considered,
if the stress components are ordered according to ©,3 ©; » 63 . The surface is conveniently
represented by hydrostatic and deviatoric sections where the first one forms a meridianal plane
which contains the equisectrix ©,= §,.= 6, as an axis of revolution . The deviatoric section lies in
a plane normal to the equisectrix, the deviatoric trace being described by the polar coordinates

r, e , see Fig. 2.
Basically, there are four aspects to the mathematical medel of the failure surfoce:

1. Close fit of experimental data in the operating range.

2, Simple identification of model| porameters from standard test data.

3. Smoothness = continuous surface with continuously varying tangent planes.

4. Convexity - monotonically curved surface without inflection points.

Close approximation of concrete data is reached if the foilure surface depends on the
hydrostatic as well as the deviatoric state, whereby the latter should distinguish different strength
values according to the direction of deviatoric stress. Therefore, the failure envelope must be
basically a conical surface with curved meridians and a non-circular base section. In addition,

in the tensile regime the failure suface could be augmented by a tension cut-off criterion in the
form of a pyramid with triangular section in the deviatoric plane.

Simple identification means that the mathematical model of the failure surface is defined
by a very small number of parameters which can be determined from stondard test data, e.g.
uniaxial tension, uniaxial compression, biaxial compression tests, etc. The description of the
failure surface should also encompass simple failure envelopes for specific model parameters. In
other words, the cylindrical von Mises and the conical Drucker-Prager model should be special
cases of the sophisticated failure formulation.




Continuity is an important property for two reasons: From o computational point of view,
it is very convenient if a single description of the failure surface is valid within the stress space
under consideration. From the theoretical point of view the proposed failure surface should have
a unique gradient for defining the direction of the inelastic deformations according to the
‘normality principle’. The actual nature of concrete failure mechanisms also supports the concept
of a gradual chenge of strength for small variations in loading.

Geometrically, the smoothness condition implies that the failure surface is continuous and
has continuous derivatives.Therefore, the deviatoric trace of the failure surface must pass through
r, and r, with the tangents £, and tz at 8- ©° and 8- c0°, see Fig. Z. Recall that
for isotropic conditions only a sextant of the stress space has to be considered, O« 8< 60",

Convexity is an important property since it assures stable material behaviour according to
the postulate of Drucker [32], if the "normality” principle determines the direction of inelastic
deformations. Stability infers positive dissipation of inelastic work during a looding cycle
according to the concepts of thermodynamics . Figure 3 indicates that convexity of the overall
deviatoric trace can be assured only if there are no inflection points and if the position vector
satisfies the basic convexity condition

Lo, L where n = r(9- 0, 120° 240%)
r z
T, r(P=60,180",300) M

Continuity infers compatibility of the position vectors and the slopes ot 8= 0" and 8+ 60"
Consequently, there are ot least four conditions for curve-fitting the deviatoric trace within
0°¢ @2 &0% In addition, the convexity condition implies that the curve should hove no inflection
points in this interval, thus the approximation can not be based on trigonometric functions [30] or
_Hermitian interpolation. |f the curve should also degenerate to a circle for r,»r, , thenon
elliptic approximation has to be used for the functional variation of the deviatoric troce. The
ellipsoidal surface assures smoothness and convexity for all position vectors r  satisfying

— h&rcn o)

The geometric construction of the ellipse is shown in Fig. 4, the details of the derivation are giver
in the Appendix |. The half axes of the ellipse a, b are defined in terms of the position vectors
rr by

LI 8

ES
a"__ P;Ll’.-lr‘;’

Br, - 4n 3)

b = ant- 51 *Lr":
4r -8n

The elliptic trace is expressed in terms of the polar coordinates r, & by

1 t. }g-
in {r:.. I'.:) cos © + l",_(ll'.‘ rﬁ[“'(ﬁ‘.‘" I"r‘)‘-mg +Br-4r, \".,] (4a)
4(rt- r.‘)cosz + (ro-2v)?

r(g) =

with the angle of similarity 8

©,+6,-26; 4b
f2 [(6-5.)% (5u-Sa)+ (5u-55 | % “)

cos B =



In the following the deviatoric trace is used as base section of a conical failure surface
with the equisectrix as axis of revalution. A linear variation with hydrestatic stress generates a
cone with straight line meridians, In this cose the failure surface is defined in principal stress
space by o homogeneous expansion in the "average" stress components &, , T« ond the
angle of similarity ©

$(6 )= §(5a,ta,0) = — %+?{E~$§--1 (5)

The average stress components ©a, Ta. represent the mean distribution of normal and shear )
stresses on an infinitesimal spherical surface. These values ore normalized in the failure condition
eqg. (5) by the uniaxial compressive strength .. The stress components are defined in terms of
principal stresses by

51 = 'L_{E.i + Gl.* El‘)

(6)
t - fe [E-6S (oo e Grey Tt

These scalar representations of the state of stress at a point are related to the stress components on
the "octahedral" plane 6. , t. by

Caz G, (7a)

tq_- E ta

The average stress components also correspond to the first principal stress invariant T, and the
second deviatoric stress invariant In:. according to

(7b)

% L k
Ta = “;_Inz. "]'FELI-'SI-: *

For material failure, (& =0 , the following constraint condition must hold between
the average normal stress and the average shear stress

Eer@[-1e] @

The free parameters of the failure surface model £ , and . are identified below from

typical concrete test data, such as the uniaxial tension test §,. , the unioxial compression test
foo ond the biaxial compression test §_, . Introducing the strength ratios &g . &g

Nz = %l /'?m (9}
Xy = '?cb/';w

the three tests are characterized by
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6« f. + % L ody o’ r
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Substituting these strength values into the failure condition eq. 8, the model parameters
are readily obtained 5
Z = Ny Wy
Xv - Ku (1)
r = |& -—...__“” Ke
' ]: Zay+ oy
r o= |& ___%v og
t I; By Az + Ay Az
The apex of the conical surface lies on the equisectrix at
B
T ” z (12)
The opening angle @ of the cone varies between
tan , = = I n‘t o= O
and 3 2 (19
n . .
dan lf‘- -5 . at 6- o

The proposed three parameter model is illustrated in Fig. 5 for the strength ratios o(gal.3
ond az=0.1 . The hydrostatic and deviatoric sections indicate the convexity and smoothness of the

failure envelope. The proposed failure surface degenerates to the Drucker-Prager model of a
circular cone if

or Reh=h (14)
- Xy
DL Y
In this case the conical failure surface is described by the two parameters £ and T,
| &a (15)

L U <
F e feu

The single parameter von Mises model is obtained, if in addition



2 & o0
or (16)
&y = |

In this case the Drucker~Prager cone degenerates into a circular cylinder whose radius is defined
by

L

s \Fgu “7}
with the strength ratios

Ky = &y =] (]8)

Figure 6 shows o comporison between the failure surface and experimental data reported in
[21 - Close agreement ean be cbserved in the low pressure regime for the strength ratios & =12
and «z=0.15 . In the high compression regime there is considerable disagreement mainly along the
compressive branch. Therefore, the three parameter model is refined in the Appendix Il by two
additional parameters, extending the range of application to the high compression regime. This
five parameter mode! establishes o failure surface with curved meridians in which the generators are
approximated by second order parabolas along 8= 0" and 8= &0 with a common apex at the
equisectrix, see also Fig. 11.

Figure 7 shows the biaxial failure envelope of the three parameter model for three different
strength ratios ®y=1.3, wp=o.l ; &u=10, &z=o00l and «u=1.2, xazs 0I5 ,
A comparison with test data from [18],[21:1 indicates that the shear strength is overestimated consi-
derably because of the acute intersection with the biaxial stress plane. However, if we consider
the dominant influence of the post-failure behaviour on the structural response [30 , there is little
reason for further refinements of the initial foilure surface model.

3. CONSTITUTIVE MODEL

In the following the previous model of the failure envelope is utilized for the development
of an elastic perfectly plastic material formulation in compression. The constitutive model is sub-
sequently cugmented by a tension cut-off criterion to account for cracking in the tension regime.
In both cases it is assumed that the normality principle determines the direction of the inelastic
deformation rates for ductile as well as brittie post failure behaviour.

3.1 Elastic Plastic Formulation :

Inviscid plasticity is the clossical approach for describing inelastic behaviour via incremen-
tal stress-strain relations. The constitutive model is based on two fundamental assumptions, an
appropriate description of the material failure envelope and the definition of inelastic deformation
rates e.g. via the nermality principle.

a. Yield Condition

The yield surface serves two objectives, it distinguishes linear from non-linear and
elastic from inelastic deformations. The failure envelope is defined by a scalar function of stress,
$(€ ) -0, indicating plastic flow if the stress path intersects the yield surface. For concrete
type of materials the yield condition con be opproximated by the three parameter model shown
in Fig. 5 or more accurately by the five parometer model developed in the Appendix II.

b. Flow Rule

For perfectly plastic behaviour the yield surface does not change its configuration
during plastic flow, hence the stress path describes a trajectory on the initial yield surface, while



the inelostic strains increose continuously. In this case the inelastic deformations do not contri-
bute to the elastic strain energy, thus the inner product of plastic strain and elostic stress
rates must be zero

L I
LA (19)%
In other words, the plastic strain rate must be perpendicular to the yield surface
Y= h X (20)
where the normal n s the unit gradient vector of the yield surface
22/96" 73]
N T TesaeT

Explicit expressions of 2£/3€*% are developed in Appendix Il for different yield surfaces.,

The normal defines the direction of the plastic strain rate, the length of which determines the
loading porameter A . The normality condition follows from Drucker's stability postulate which
assures non-negative work dissipation during a loading cycle, also inferring convexity of the yield
surface. For perfectly plastic behaviour the material stability is "indifferent" in the small,
corresponding to the "neutral" loading condition for which initial yield and subsequent flow is
governed by

$€ -0 and -%‘(7)-0 (22)
The consistency condition implies that

. a -

e - Té ¥-0 (23)

This statement is clearly equivalent to the normality principle stated in eq. (19).

c. Incremental Stress-Strain Relations

In the following an elastic perfectly plastic consitutive model is derived using the
previous statements and the kinematic decomposition of the total deformations

R 2
The linear elastic material behaviour is given by the rate formulation of generalized Hooke's law

§- Eé- E(3-% (29)
Substituting the stress rate into the consistency condition, eq. (23), we obtain

Ae-nE(3w (26)

This expression yields for the undetermined loading parameter

nE(f-ni)-o | (@
and hereby

A+ —— nEy}
nEn (28)



The plastic stroin rate follows from eq. (20)

1
neEn
The incremental stress-strain relations are obtained by substituting 1:[9 into the expression of

the stress rate, eq. (25)

. | * . )
E=E(I$‘m nn E)‘E (30)
Note the linear relationship between the stress and deformation rates in eq. (30)

E-Fy (31)

1‘11,=n>-\-— nntEj' (29)

The tangential material law ¥  is defined by

F-E(I.- wen NNE) @

For perfectly plastic behaviour, ¥ depends only on the elastic properties ond the instantaneous
stress state via ¢ . The second term of eq. (32) represents the degradation of the material
constitution due to plastic flow.

3.2 Elastic Cracking Formulation

Small tensile strength is the predominant feoture of concrete-type materials. In the
following o simple constitutive model is developed for perfectly brittle behaviour in the tensile
regime. In analogy to the elastic plastic formulation the elastic cracking model is based on two
fundamental assumptions, a tension cut-off criterion for the prediction of crocking and an oppro-
priate description of inelastic deformation rates e.g. vio the normality principle.

a. Crack Condition

The tension cut-off criterion distinguishes elastic behaviour from brittle fracture, i.e.
separation of the material constituents due to excess tension. To this end it is assumed that the
scale of observation justifies o continuum approach. For concrete-type materials cracking may be
predicted by the single one parameter model based on the major principal stress

£(€) = 7,-5 with 25,2 6; (33)

where ©; corresponds in general to the uniaxial tensile strength §, . The failure surface is
shown in Fig. 8, which indicates the pyramidal shape and the triangular base section in the
deviatoric plane. Alternatively, the tension cut-off condition could also be expressed in terms of
the three parameter model of the previous section or the five parameter model developed in

the Appendix Il.

b. Fracture Rule

For ductile behaviour in the post failure range the inelastic deformation rate *due to
cracking is derived exactly along the formulation of an elastic plastic solid. The ductile
post failure behaviour forms an upper bound of the actual softening behaviour [307, which may
develop in concrete components due to reinforcements, dowel action and oggregate interlock.

In the following,the case of perfectly brittle post-failure behaviour is discussed, since it
requires slight modifications of the previous constitutive model for on elastic perfectly plastic solid.
In onalogy to elasto-plasticity the inelastic deformations due to cracking Ne do not contribute to
the elastic strain energy

st s
-m K -0
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This normality principle corresponds to the flow rule of plasticity stating that the inelastic strain
rate due to cracking is perpendicular to the plane of fracture

N.-n (35)

For the maximum stress tension cut-off criterion the normal vector | is defined by the direction
of the major principal stress; thus in the principal stress space

2?!93* ~ ' (36)
h = sgseri & -

where @, is the unit vector
e - 11,o,c,o,a,cg (37)
For perfectly brittle behaviour the loading parameter f'\ is determined from the softening condition
£(®€)Y=0 and §(8)=-5 (38)
In this case the consistency condition infers that

g = (39)

c. Inelostic Strain Increments

In the following an expression is derived for the inelastic deformation rates due to
cracking. Substituting the stress rate expression eq. (25) into the consistency condition eq, (39)

8 t . ¥
8- e E(jel) _ “0

we obtain an expression for the undetermined loading porameter A

1 . }\ - ' 1)
and hereby € E(F i ) ¢

A - oEs, @EFY) )

Note the equivolence to the elastic plastic formulation in eq. (28) except for the release of &
due to brittle softening. The resulting inelastic fracture strain rate follows from eq. (35)

.- nh-e )\ (43)

N TEE, (e.e Eg-es)

The first portion of this expression con be used to construct incremental stress-strain relo-
tions in analogy to the elastic plastic formulation, see eq. (30). This part would correspond
exactly to a ductile cracking model in which the major principal stress is kept constant at the
tensile strength G,= %¢ . The corresponding tangential material low would become transversely
isotropic with zero stiffness along the major principal oxis. Additional cracking in other directions
can be considered accordingly.

The second portion of eq. (43) represents the sudden stress release due to brittle fracture ;S
which is projected onto the structural level by o single initial locd step in the analvsis.

11



3.3  Tronsition Problem

The previous rate formulation for elastic plastic and brittle behaviour is valid in a diffe-
rentiol sense only. In a numerical environment clearly finite increments prevail during numerical
integration of the rate equations l_33.], [34] This approximation problem is magnified by the
sudden transition from elastic to plastic or elastic to brittle behaviour. In the latter case the dis-
continuity of the process is further increased due to the immediate stress release if the failure
condition has been reached. Clearly, the success of the numerical technique depends primarily on
the proper treatment of the transition problem for finite increments.

Consider the most general case of o finite load step shown in Fig. 9. At the outset we
assume that the stress path has reached point A for which %[5‘1}( Q indicates an elostic state.
Due to the finite load increment a fully elastic stress path would reach point B penetrating the
yield surface at C for proportional loading. The condition £(%;)>Cviolates the constitutive
constraint condition

f(®) <o (45)

and suggests two strategies for numerical implementation,

a. Proportional Penetration Method

Assuming proportional loading the load increment is subdivided into two parts, an
elastic portion for the path A = C and an inelastic portion governing the behaviour after the
failure surface has been reached ot C. The evaluation of the penetration point C reduces to the
geometric problem of intersecting a surface with o line, o task which is non=linear for curved
failure envelopes. The computation of the stress trajectory on the yield surface involves the
numerical integration of -

T=
6. -|Fudg (46)

since the tangential moterial law varies with the current state of stress. |n addition we hove to
assume that the inelastic strains increase proportionally from ¥:to Ys. In numerical calculations
additional corrections are required at each iteration step to place the stress path back onto the
yield surface |37},

b. MNormal Penetration Method

In this scheme we assume that the elastic path reaches the yield surface ot the inter-
section with the normal M, . The evaluotion of the foot point D reduces to the geometric prob=
lem of minimizing the distance between B and the failure envelope, see Fig. ¢

d - (‘a' E,‘f [:5{ 5;} o Minimum (47)

The extremum condition is used to determine the components of €, by solving the linear system
of equations,

34
5, © )

subjected to the constraint condition

Note that the loading parometer A is proportional to the distance d, thus the length of the
inelastic deformation increment is determined from

L _d
» WER 0
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where the normal is defined by the stress at point D

. 3/e8, (51)
EXIELN

In principle both methods are feasible, yielding stress values which satisfy the constitutive
constraint condition. Both formulations distort the actual path of evolution, an effect which is
reduced primarily by using smaller load increments. From the standpoint of computer application
the normal penetration approach is mere efficient than the proportional penetration methed, since
the integration of eq. (46) is avoided. B

4. CONCLUDING REMARKS

Two fopics were discussed, an appropriate model for concrete failure under triaxial con-
ditions and the ensuing constitutive low for elastic perfectly plastic behaviour in compression and
elastic perfectly brittle behaviour in tension,

First o three parameter failure surface was developed providing o close fit of concrete dota
in the low compression regime, The mathematical model establishes a convex failure envelope
which is continuous with continuous first derivatives. Faor application in the high compression
regime the formulation was extended to a five parameter model introducing curved meridians at the
hydrostatic sections &=C" and B=6c”,

Subsequently, those failure concepts were applied to construct a constitutive model for
elastic perfectly plastic behaviour in the compression regime. An analogous formulation was
developed for the elastic perfectly brittle behaviour in tension using a stroin softening plasticity
formulation. Both constitutive models were based on appropriate failure descriptions and the
normality principle determining the direction of the inelastic deformation rates. For numerical
implementation the transition problem was studied in the light of finite lood increments. Two
penetration methods were explored for decomposing the total defermation rote into elastic and
inelastic components. The normal penetration scheme offers computational advantages, in which
case the transition point is determined by the intersection of the normal_with the yield surface,

Some of the aspects above hove been examined numerically in {30]. The unified consti=
tutive model is presently incorporated in the finite element software system SBB which is developed
at the ISD for the analysis of prestressed concrete reactor vessels E35 -J.

At the present state there is little need for further refinements of the faflure surface model.
Future research should be rather directed towards the development of more sophisticated theories to
trace the actual fracture mechanism under non-uniform stress conditions. Clearly, the two extreme
concepts of brittle fracture and ductile yielding provide nothing but lower and upper bounds of the
real behavieur in the post-failure regime and lead to a wide variation of the structural response
[30]. The failure condition 3(® ) =C clone is insufficient, since the mechanism of crack propa-
gation depends strongly on the distribution of stresses,

In addition, the normality principle should be revised since considerable dilatancy effects
are introduced by the proposed model which were observed experimentally only in the vicinity of
failure [24]. To this end the inelastic volumetric response could be controlled by an elliptical
cap of the failure surfoce under hydrostatic compression [ 36] .
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Al. ELLIPTIC TRACE OF FAILURE SURFACE

In the following, the curve fitting of an ellipse is briefly summarized in the devio-
toric section of the failure surface. The derivation invelves considerable algebra, thus enly
the very essential steps are indicated.

Fig. 10 shows the geometric relationships of the ellipse with x v as principal oxes.
The continuity conditions of Fig. 2 imply that the minor y - axis must coincide with the
position vector r, , and the ellipse must pass through the point B (m,w) with the normal
nifjz, Y . The half axes a.k are determined below in terms of the position vectors
r,.r, - The stondord form of an ellipse is

L 1
Nyt (r.m
Sampling this equation at the point T, (m, ) yields
" nt
ot o= (1.2)
Partiol differentiction of eq. (1.1) establishes for the direction cosines
Ar Af
Ta 1 ‘j‘ *
e = =& = o RSN/
a K with K'—Z(E—:«-% c (1.3)
& i
nyr I E

Sampling the normal of the point T, (m.n)yields for the two components

L m iz

ot 2 = (1.4)
in .z L

s z

These two relations form a condition for a. b

3 m L

o = B (]_5)

The coordinates of the point T, are readily expressed by the position vectors . 1, and
the half axis &

m = i—:- ry
(1.6)
n = L—(*"."I"L‘)
The half axes a, b are determined if we substitute egs. (1.6) and (1.5) into eq. (1.2)
L
oo alnew
Svo- by (]-7}

T
2wt S+ LV,
Ly, - S
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In the following the cartesian description of the ellipse is transformed into the poler coordi-
nates v, &  with the centroid at ©. To this end we recall the polar equation of an ellipse
where the pole is af the centre ' , see Fig. 10

i =
T la Lal . (1.8)
S’ ol cosg + ks
The transformation of the §.§ -coordinotes into v, & follows from trigonometric relations
ond properties of the triangle ¢ ¢’ P

g r _ v.-b
AR T AR T A (g9) {(1.9)
G UL e (kY - 2y (B conB (1.10)

Using the trigcnometrig relation for sums of angles, we obtain from eq. (1.49)

c.-DSkS _ rt_csg—(d'n"'-;) (1.1
Substitution into eq. (1.8) yields for the position vector 3

gh= a+ EB'{‘:. Lrees® - Lh-ivﬂl (1.12)
Equating eq. (1.10) with eq. (1.12) estoblishes the ellipse in terms of the polar coordinates
v, & where o w8 G

n : - o
at(r,-b)wak ~ ab l Cleei® v 2by, SinG - ¥ o B (1.13)

r(®) = e
ateod g + bain B

Substitution of the half axes a, % into eq. (1.13) yields the final form of H,'Ei\J in terms of

the parameters r,, r,

2v (Vo - v 5y cos@+ v, (Tv-vy) ‘.i(tf- L‘,‘\mﬁfgﬁ-";v}- by, v, (1.14)
Livi-v") ol €+ (-2v)!

@) =

Note that the ellipse degenerates into o circle for  ¥(=¥. or equivalently a=b.
At the meridians &+3° gnd &= Gc® the position vector r{8) turns into r,and Ve o
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All. FIVE PARAMETER MODEL WITH CURVED MERIDIANS

In the following the three parameter model of Section 2 is refined by adding two
additional degrees of freedom for describing curved meridians. In this way, the failure
surface model can be applied to low as well as high compression regimes .

In contrast to eq. (5) the linear relationship of the average stress components
is replaced by the more general failure condition

| Ta
£(€) = ?Lﬁu.Ta.9}=-;§;§Ei§;‘* (2.1)

In this case the constraint condition of material failure, $(® Y-¢, infers that the average
shear stress is restricted to

32 - (@) (2.2)

Note that Ta is now a single function of 8a , ® insteod of being the product of two dis=
joint functions in 5 end @ , see eq. (B). As consequence, the proposed five parameter
model removes the offinity of deviatoric sections which was built into the previous three
parameter model.

The failure surface model is constructed by approximating the meridians ot &= (©
ond 8= 60° by two second order parabolas which are connected by an ellipsoidal surface,
the trace of which is shown in Fig. 4. The surface is defined by an extension of eq. (4a) to
incorporate the dependence on the average normal stress =, .

k] N b - 2
2t (-t Ycos®  va (2, - ) | A0~ )eod 8-Sy hy, v,

E{wm-t})cos 8 « (n-uDt (2.3)

F(%a,€) =

The position vectors v, , r, describe the meridians at 8= 0 and 8= 60° as functions of
the averoge stress =

o) = va, ™, ol By L B
r(%a) = O, a. 7 “‘gw u (2.4)

1 £

VLLB“\J * L:a * L. —:—ﬁ: * Li E::J_ O-'k‘ g*‘ co

The six degrees of freedom ., &y a, ks b, b, are identified below from experimental
data. To this end, the uniaxial tension test 4, , the uniaxial compression test % and the
biaxial compression test {ci. are used in addition to two strength values in the high
compression regime

Y = Itq CIA G" D=
Zow 3 e ?i 'g Feu (2.5)
S ﬁ ar B-&

Moreover, the two parcbolas have to pass through o common apex S.. at the equisectrix,
thus imposing an additional constraint condition

Jou 3“ e r‘(j.,\) - \'l_[jr\ =0 (2.6)
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The stress states of the five tests are summarized below together with the constraint con-
dition of the common apex.

.e'l ENT | y |
TEST 1 Ba/feu Ta /feo G - r(®a.8) |
I - [ ! 3 l
[ ®S=f, AL I ey | C | (BL) |
| : ! ’ | 3
[ | 1 : i |
mewde g T Rw |oo ey |
; j 5 | '
: ' Q ; 2.7
TR P < Poon(E) —
| ’ | -' 'i
SIS R O e T
I | |
14 i | . i
| IR T B CN
i . ; | | ]
; Sn : o bc ! YL(H“-\)

For 8= 0% and 8= 60° the transcendental expression of eq. (2.3) reduces to 1i(Bu), n(w).
Therefore, only test results along these meridians are used for the identification of the six
parameters &, a. a, h, b, by , which involves the solution of a linear problem .

Substituting the first three strength values of eq. (2.7) into the failure condition eq. {(2.2)
establishes the parometers a. «, ,ap of the "tensile" meridian 8=

Qo = —.‘?::Dtuﬂ«l - % &uLQl;_-o-'I[%EwU
— v (2.8)
| - 'E L % v
ot _?;(2.(“ ‘t}\!a:*’hg ZXy+ ¥y
a E E(“i‘xuj‘l‘é—-’(;ﬁu“' S"i (2(., 1-0(;3
L‘
(Tav v x) (il’ %.“§+J:,'°(t§' L xaw)
The apex of the failure surface follows from the condition ¥ (§) = o , hence
Uy 3:+ a jo + a. =0
—a,- Jat- b, (2.9)

3“ = 2 ay
Substituting the second three strength values of eq. (2.7) into the failure condition eq (2.2)
establishes the parometers b. L, b, ot the "compressive" meridian ©= &0°
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The proposed five parameter mode! features a smooth surface since the continuity conditions

of Section 2 are incorporated in the formulation of the position vector, eq. (2.3). The sur-
face is also convex if the model parometers satisfy the following constraints,

w

(2.10)

by =

Qe > 0O Gl'd 0.., Lo ) ‘:11 [ s
o by «o , b, co (2.11)
and in addition
¥, (Ba) S
v, (B z (2.12)

The five porameter model is illustrated in Fig. 11 where it is compared with experimental data
reported in [21]. Close agreement can be observed for hydrostatic as well as for deviatoric
sections. In the low compression regime the surface strongly resembles o tetrahedron, the planes
of which bulge with increasing hydrostatic compression approximating asymptotically a circular
cone.

In summary, the propased five parameter model reproduces the principal fectures of the triaxial
failure surface of concrete: It consists of @ conical shape with curved meridiens and non-
circular base sections as well as non-affine sections in the deviatoric plane. The five para-
meter model is readily adjusted to fit a variety of simpler failure conditions:

The von Mises model is obtained if

ao- b, and  a,-bi=ai=bi=o (2.13)
The Drucker-Prager model is obtained if

o - e ond  @irbo=O (2.14)

o, = l‘-‘h
The three parameter model of Section 2 is obtained if

Q. , o . by =

""h:‘ o and aL= by < (2'15)
A corresponding four parameter model is obtained if

J- PR - YUY Affinity Condition (2.16)

=) by by

Keeping the objective of the failure model in mind local deviations from test results oppear
rather meaningless. The main goal of the analysis is a sufficient level of confidence with
regard to serviceability and |imit lood. The fluctuations of experimental measure -

ments make it desirable that the failure model provides primarily conservative estimates of the
actual strength values.
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Al GRADIENTS OF DIFFERENT FAILURE MODELS

In Section 3 the normality principle is used to establish the direction of the inelastic
deformation rate. To this end explicit expressions are developed below for the gradient
directions of different classes of failure conditions.

a. Tension Cut-off Model

The tension cut-off condition of eq. (33) is the simplest form of @ fracture criterion for
brittle matericls. It predicts failure if the major principal stress reoches a limiting value

.?.U.:j; g, -5 _(3.1)

Normally G¢ corresponds to the uniaxial tensile strength, §+ . In the case of the
maximum stress criterion the gradient direction is collinear with the unit vector @, ,

a a 26, '
%t=.{t;r€t'6r=Elnalcic‘c'ol (3.2)

b. Von Mises Model

The von Mises criterion is opplied extensively os yield condition for metals. It predicts
plastic flow if the average sheor stress Ta , eq. (6), reaches a limiting value &y

flTa) = T~ sy (3.3)
Normally Gy corresponds to the uniaxial strength Gy - r. feu , eq. 17, or an equivalent

shear strength value . The gradient is in this case collinear with the direction of the devia-
toric stress

E af dra _ |
% - b5 " o O 6.4

which is defined by

By, = T |16.,-6,-5,, 15.-5-5,, LB3-8.-§;,0, 0,01 (35

c. Drucker~-Prager Model

The Drucker-Prager criterion is often applied as yield eondition for rocks and soils. It pre=
dicts failure if the averoge stresses ., Ta, satisfy the constraint condition eq. (15)

giea,m=w;—%+;—nf—t—l ' (3.6)

The gradient has in this case hydrostatic as well as deviatoric components . From the
chainrule of differentiation we obtain

af 22 W P dta .
38t gﬁ%*ﬁ‘c* T 0BT (3-7)

The hydrostatic contribution follows from the first term

92 Bu _ | !
Ezi T8t T 3R s € -9

with
e, - 1';1;‘:";‘:‘-‘3}
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The deviatoric contribution follows from the second term

2] Dt"‘._. 1 1 39
UTa 6% = Vi iOta - -9

The deviatoric stress &5 is defined in eq. (3.3).

d. Three Parameter Model

e e i s e s

The three parameter model of Section Z applies to concrete type materials. It predicts foilure
if the average stresses S, Tu ond the angle of similarity @ satisfy the constraint condition
eq. (5)

- S . T
?Lb"‘rt“; e') i E’ B &) #cu ! (3.]0]

The position vector r(B) is given in eq. (4a), thus the gradient direction has three contri-
butions according to the chainrule of differentiation

3 3 FE. | 3F T 93 %
G- e Fow S

The hydrostatic component corresponds to that of the Drucker-Prager model

23 O

B o8¢

The second term is equivalent to the deviatoric compenent of the Drucker-Prager model

~e, (3.12)

\
2 few

% M __ 1V e (3.13)

3T OB  ¢(@)Fw 0T T
Another contribution in the deviatoric section follows from the third term of eq. (3.11) which
expands info

ag I _ By dy o0

3 W6t T By B € (3.14)

The first term of eq. (3.14) follows from eq. (3.10)

2 ” : (3.15)

e
Xy Jev ()
The second term of eq. (3.14) involves considerable manipulations becouse of the complex
structure of r(9), eq. (4a)

r(8) = —;L (3.16)

where

W= 2wn(rt- )b - vy (2v- W) Y 4(rf~vf]cd;QrEv: Ly,

and . (3.17)
B - 4’ (.Fl"' 'l‘|.-j m&‘g - ("I._ 2?."}1

Differentiation of eq. (3.16) yields

dis d
Ll °Js T REE (3.18)

ﬁ ke

23



L (2v- \'D (r-¥) 2urB s

da Loy L
where e - ° (- 1) A B [20t- )eod @ -5 by )t
and j_; = Z(wW-v') 20 us @ (3.19)
The third term in eq. (3.14) involves the differentiction of the angle of similority & ,
eq. (4.b)

oz @ = % (3.20)
where

P = By+o =16y and L‘L= ‘5_0 Lo (3.2])

Differentiation with respect to stress leads to

38 a(ei £)
EL A (3.22)

ap 2
L i —rae
ey = qt
The direction of this component is defined by
L= 0 -2, 0, 0, e} (3.23)
and S =
%‘- = 'j% "‘l: ET-"

The three contributions of the gradient 3{/38% can now be ossembled from eq. (3.12), eq.
(3.13) ond eq. (3.14) , the terms of which are defined in eqs. (3.15), (3.18) and (3.22).

e.  Five Parameter Model

In Appendix |l a highly sophisticated model of the triaxial concrete failure surface was
developed based on five parometers. This general formulation encompasses the other surface
formulations for special values of the degrees of freedom. The five parameter model predicts
failure if the state of stress satisfies the constraint condition, eq. (2.1)

| Ta
r(8a,®) Jeu

£(%a,%u,©) = -1 (3.24)

The chainrule of differentiation yields again three contributions which determine the hydro-
stotic and the deviatoric components of the gradient 3% /3%*

oF or OB ar W AT
Al % ob. OBt T vy Jo TE* %Uﬁ“ (3.25)

The first term represents the hydrostatic component, the individual contributions of which are
expanded below

2 __ %t | 3.26
or v vi(5..B) (3.26)

+
T(Hﬁ,g\‘).-_ S;

in contrast to eq. (3.17) s, t and~w are now functions of 8 as well as Sy . Fromeq. (2.3)

with
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it follows thot

s (5., 0) = 2(¥i- v W) conB

% (50 8) = (2vve- ) [4 (-l e But- M.v.-_\“"
L 0 (5a,0) = 4(uW-¥') 0d @~ (v- 2"

(3.27)

Eq. (2.4) defines the dependence of the position vectors 1, , r, on the overage normal
stress G, .

B B
f(fa) = Q- O30 = Gugo (3.28)
7 - . T Ga
[ Y LE&E = bu Bl 1::‘ + b1 ?:u‘
Differentiation of T(BA,G) involves considerable algebra.
o ST Pl
G ¥ (m M 5'-‘;:‘3 - LS*t} RE, (3.29)
_B_ET'; B oL
The partial derivatives with respect to the average normal stress are given by
-Ei = 2 w:-e I(’srt' 'lr)di't" Zu. vy A'{,]
1=t
_ | Ry | ; - . -
;ﬁa = Iz-,_ dv, + L{.v.—h‘)d-.-.,]w + 35 (zuv "l\[(\ 8r. cosB riom-hu)dy,
+ (Bvccle- Luhdhj
r |2 3.30
w o= A eedessis bin ) (3.29
and 5 .
5:7_ = (8¢ '@ - hAvydy, « (8v,w0s B+ 2y - L) dy,
(%
The rate of change of the position vectors ¥, , ¥ follows from
) 204 %a
dy, = =«
E feut (3 .31)

S
R
The direction of the hydrostatic contribution is obtained in analogy to the Drucker-Prager
model from eq. (3.8)

6

s T e i
The second and third terms of eq. (3.25) define the devictoric component of the gradient
direction. These expressions correspond to the formulas derived previously for the three
parameter model, eq. (3.13) and eq. (3.14), the individual contributions of which are
defined in eq. (3.15), eq. (3.18) and eq. (3.22).

In conclusion, the normal iy is readily determined from the gradient of the failure surface
model

~ Qw'_,
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In the case of the five parameter mode! the normal is uniquely defined in terms of the
current state of stress B ,"Tq ond & in addition to the six degrees of freedom a., «, d,,
bo b, by . The expressions for the gradient are rather elaborate, but for repeated com-
puter applications "generality" should be the guiding axiom. To this end, the formulction
of the normal for the five parameter model degenerates to the special cases of the von Mises

model, the Drucker-Prager model and the three parameter model.
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