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Abstract

The integration of building energy simulation (ES) and computational /uid dynamics (CFD) programs eliminates many assumptions
employed in the separate applications, resulting in more accurate predictions of building performance. This paper discusses the methods
used to determine convective heat transfer on interior surfaces of building envelope, which is the key linkage between ES with CFD
programs. The study found that the size of the 2rst grid near a wall in CFD is crucial for the correct prediction of the convective heat.
A 2ner grid resolution in CFD does not always lead to a more accurate solution when using zero-equation turbulence models. Through
numerical experiments, the paper suggests a universal 2rst grid size at 0:005 m for natural convection room air/ows and 0:1 m for forced
convection indoor air/ows. The investigation also found that negative convective heat transfer coe"cients may cause divergence and
instability of the coupled simulation.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A building energy simulation (ES) program predicts
building thermal performance, while a computational /uid
dynamics (CFD) program calculates detailed air/ow char-
acters. Both of them are important tools for building per-
formance evaluation and have been widely used in building
and system design practices. Many literatures on this topic
are available, such as those by Clarke [1], Chen [2], Martin
[3], Chen and Srebic [4], etc. The coupling of ES and CFD
can take full advantages of the individual programs and pro-
duce more accurate and complete results, because they can
provide complementary boundary conditions to each other.
For example, ES can provide interior surface temperatures
of building envelopes and heating/cooling load to CFD as
boundary conditions while CFD can determine accurate
surface convective heat /uxes for ES. The bene2ts of the
integration have been discussed in many previous studies,
such as, by Clarke et al. [5], Nielsen and Tryggvason [6],
Srebric et al. [7], Beausoleil-Morrison et al. [8], and Zhai
et al. [9].

∗ Corresponding author. Fax: +1-303-4927317.
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In a coupled simulation, ES calculates the heat conduction
through building envelopes and CFD determines air move-
ment in an indoor space. The convective heat transfer on
interior surfaces of building envelope is the most important
linkage to couple these two programs [9]. In the coupling,
CFD provides ES convective heat transfer on each enclosure
surface. The convective heat transfer calculated by CFD is
highly sensitive to the numerical methods and turbulence
models employed in CFD. This study analyzes the eDect of
the size of the 2rst grid to a wall used in CFD on the heat
transfer and examines how turbulence models determine the
convective heat transfer. In addition, with traditional de2ni-
tion of convective heat transfer coe"cient, which is based
on the temperature diDerence of an interior surface and room
air, the coe"cient value can be negative. The impact of neg-
ative coe"cient on the coupled simulation is another subject
of this study.

2. Factors to numerical solution of convective heat
transfer

CFD discretizes the computational domain into many grid
cells and solves the governing conservation equations of
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Fig. 1. Illustration of the grid, cell, node, and distance to the surface in
CFD.

/ow on these grid cells. As shown in Fig. 1(a), CFD calcu-
lates convective heat transfer from a rigid surface through:

Q = hA(Tsurface − T1); (1)

h= Cp
	(
t + 
)

Pr
1
D
; (2)

where h is convective heat transfer coe"cient, A is surface
area, Tsurface is surface temperature, T1 is air temperature at
the 2rst grid node that is at a normal distance of D to the
surface, Cp is the speci2c heat of air, Pr is Prandtl num-
ber, 	 is air density, 
t is turbulence viscosity determined
by turbulence models at the 2rst grid node, and 
 is the
molecular viscosity of air. According to Eqs. (1) and (2),
the convective heat transfer is determined by the convective
heat transfer coe"cient and temperature diDerence between
the surface and air at the 2rst grid node, and the convective
heat transfer coe"cient is determined by eDective viscosity
of air (turbulence viscosity plus molecular viscosity) at the
2rst grid node. In order to obtain accurate surface convec-
tive heat transfer, it is important to 2nd its relationship with
the D and turbulence model.

Since the size of the 2rst grids in CFD can be adjusted
according to the resolution requirement, the convective heat
calculated in this manner could be grid-dependent. Another
method is to use a prescribed distance, D2, to a wall surface
and calculate convective heat transfer based on the air tem-
perature and eDective viscosity there, as illustrated in Fig.
1(b). Since the D2 is a prescribed value, this method would
eliminate the grid dependence problem.

However, the convective heat transfer calculated with the
second method could be diDerent from that calculated based
on the information at the 2rst grid node. For example, if
assuming laminar /ow and D2 = 2D, the same heat transfer
would require Tsurface − T2 = 2(Tsurface − T1). This implies
a linear air temperature pro2le in the region, which is true
only at the very close vicinity of the surface for laminar
/ow. Such a condition is di"cult to meet for most indoor
air/ows.

Therefore, the calculation of convective heat transfer
should use the 2rst method. The question now is how to
avoid the grid dependence problem or what the size of 2rst
grids should be for the correct prediction of convective
heat transfer. CFD theory indicates that 2ner grids provide
more accurate results [10]. This may not be true when

using simple turbulence models. This paper discusses the
grid dependence problem in the following sections by using
laminar and turbulent /ows over a /at plate as examples.

3. Convective heat transfer in laminar �ows

First this investigation considers a laminar /ow of forced
convection along a horizontal plate and that of natural con-
vection along a vertical plate, as illustrated in Fig. 2. The
convective heat transfer computed by CFD is compared with
the analytical and empirical solutions to identify the impact
of the size of 2rst grid on the heat transfer.

The convective heat transfer through the thermal bound-
ary layer of the plate is

qsurface = − k
@T
@y

∣∣∣∣
y=0

= h(Tsurface − T∞); (3)

where k is the /uid conductivity, Tsurface is the plate surface
temperature, T∞ is the temperature of the free stream out-
side of the thermal boundary layer. Eq. (3) shows that the
heat conduction is the same as the convective heat trans-
fer, because there is no /uid motion in the direction of heat
transfer.

3.1. Forced convection

The exact solution of the laminar plate /ow of forced
convection is [11]

U
U∞

=
Tsurface − T
Tsurface − T∞ = 1 − T − T∞

Tsurface − T∞ ; (4)

qsurface = −k @T
@y

= −	Cp 
Pr
@T
@y

=
3
2
k
Tsurface − T∞

�t
; (5)

where �t is the thickness of thermal boundary layer and
k = 	Cp
=Pr.

The analytical solution of the boundary layer equations
shows �=�t when Pr=1, where � is the thickness of velocity
boundary layer. The exact solution of the boundary layer
equations produces [11]

�= 4:92x=
√

Rex; (6)
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Fig. 2. Laminar plate /ows of forced and natural convection.



Z. Zhai, Q. (Yan) Chen / Building and Environment 39 (2004) 1001–1009 1003

where Rex = U∞x=
 is the Reynolds number of plate /ow.
For example, if the velocity is 0:1 m=s over a 5-m long plate,

ReL=2 =
UL=2



=
0:1 × 2:5

1:5 × 10−5 = 1:7 × 104; (7)

the �t at the middle length of the plate is �t = � ≈ 0:09 m.
A CFD program would calculate the convective heat

transfer from the plate as

qCFD = −	Cp 
Pr
TD − Tsurface

D
= k

Tsurface − TD
D

; (8)

where D is the normal distance from the center of the 2rst
grid cell to the surface (half of the cell size) and TD is the air
temperature at cell center. In order to analyze possible errors
associated with grid sizes, this study considers two diDerent
grid sizes: D is smaller than �t and D is larger than �t .
• D¡�t .

When D is smaller than �t , the possible numerical error is

Kq= qCFD − qsurface = −	Cp 
Pr
TD − Tsurface

D
− qsurface

= k
Tsurface − TD

D
− k Tsurface − T∞

2=3�t
: (9)

Because the temperature pro2le in the thermal boundary can
be approximated as [11]

TD − Tsurface

T∞ − Tsurface
=

3
2
D
�t

− 1
2

(
D
�t

)3

; (10)

the relative error of convective heat transfer due to D then
becomes

Kq
k(Tsurface − T∞)

=
Tsurface − TD

(Tsurface − T∞)D
− Tsurface − T∞

(Tsurface − T∞)2=3�t

=

(
3
2
D
�t

− 1
2

(
D
�t

)3
)

1
D

− 1
2=3�t

= −1
2
D2

�3
t
: (11)

Eq. (11) veri2es that the smaller the D the more accurate the
calculated convective heat transfer. The error of convective
heat transfer due to D is on the order of O(D2) for this case.
• D¿ �t .

The same analysis can be conducted when D is equal to
or larger than �t , where TD = T∞. Then,

Kq
k(Tsurface − T∞)

=
1
D

− 1
2=3�t

=
1
D

− 3
2�t
: (12)

Eq. (12) shows that the minimum error of the calculated
heat /ux is one-third of the analytical solution in Eq. (5)
as D equals �t . The convective heat transfer calculated will
deviate signi2cantly from the actual solution if the size of
2rst grids is unreasonably large.

3.2. Natural convection

For the natural convection case, the analytical solution
shows [11]

�4
t =

240(20=21 + Pr)

Pr2g�|Tsurface − T∞|=
2 x: (13)

With this equation, one can roughly estimate the scale of �t

due to natural convection in the middle of a 3-m vertical wall
at 40◦C and room air temperature at 25◦C to be 0:024 m.

The analytical solution of the convective heat transfer for
natural convection is [11]

qsurface = 2
k(Tsurface − T∞)

�t
(14)

while the CFD equation for natural convection is the same
as Eq. (8) for forced convection. Therefore,

Kq
k(Tsurface − T∞)

=
Tsurface − TD

(Tsurface − T∞)D
− 2
�t
: (15)

• D¡�t .
When D is smaller than �t ,

Tsurface − TD
Tsurface − T∞ = 1 − TD − T∞

Tsurface − T∞ = 1 −
(

1 − D
�t

)2

; (16)

Kq
k(Tsurface − T∞)

=
Tsurface − TD

(Tsurface − T∞)D
− 2
�t

=
1
D

(
1 −

(
1 − D

�t

)2
)

− 2
�t

=
1
D

(
2D
�t

− D2

�2
t

)

− 2
�t

= −D
�2

t
: (17)

Hence, the smaller the size of 2rst grids, the better the ac-
curacy. The calculation error of the convective heat transfer
due to the size of 2rst grids (2D) is on the order of O(D)
for natural convection.
• D¿ �t .

Since TD = T∞ when D¿ �t , Eq. (15) becomes

Kq
k(Tsurface − T∞)

=
1
D

− 2
�t
: (18)

The equation is very similar to Eq. (12) for forced convec-
tion, except that the analytical heat /ux is diDerent.

4. Convective heat transfer in turbulent �ows

The study on laminar /ows veri2es that 2ner grid distri-
bution provides more accurate solutions. However, most in-
door air/ows are turbulent. The analysis for turbulent /ows
is more complicated than that for laminar /ow, because the
accuracy of convective heat transfer predicted in turbulent
/ows depends on both the size of 2rst grids and turbulence
model used. This study has examed the accuracy by us-
ing three zero-equation turbulence models and diDerent grid
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resolutions for a forced convection /ow along a plate. The
zero-equation turbulence models are frequently used in the
CFD simulation for building design due to their simpleness
and e"ciency. The three zero-equation turbulence models
tested here are:
(1) Constant viscosity model:


t = 100
: (19)

(2) Xu’s zero-equation model [12]:


t = 0:03874 |UD| l; (20)

where l is the normal distance to the surface and UD is the
air/ow speed at this location.
(3) Prandtl’s zero-equation model [13]:


t = 2�2y2

∣∣∣∣@U@y
∣∣∣∣ ; (21)

where � = 0:41 and y is the distance to the surface.
The convective heat transfer in turbulent /ows is related

to turbulence as de2ned by

q= −	Cp
(


Pr

+

t
Prt

)
@T
@y

∣∣∣∣
y=0

= h (Tsurface − T∞) ; (22)

where 
t is turbulence eddy viscosity and T represents
Reynolds-averaged temperature. In Eq. (22), 
t�
 for the
/ow region away from walls, and 
t�
 for the near wall
region, which is called viscous sub-layer. It is obvious that
if the 2rst grid is located in the viscous sub-layer, the re-
lationship between the convective heat transfer predicted
and the size of 2rst grids is similar to that for laminar /ow.
The heat transfer computed does not directly depend on
the turbulence model, although the turbulence model does
in/uence the velocity and temperature pro2les. According
to the empirical equation [11],

�turbulence = 0:057[(n+ 1)(n+ 2)=n]0:8Re−0:2
x x; (23)

where n = 7 for a common velocity pro2le in the bound-
ary layer, �turbulence for a forced convection with a velocity
0:1 m=s over a 5-m long plate is

�turbulence = 0:13 m (24)

and �sub-layer ≈ 0:15–0:2�turbulence = 0:02–0:03 m. When the
velocity is increased to 1 m=s; �turbulence and �sub-layer are
reduced to 0.08 and 0:01–0:02 m, respectively.

The empirical solution for the turbulent plate /ow and
heat transfer gives [11]

Nux = 0:0296Re0:8
x Pr1=3 = hx=k: (25)

Considering the heat transfer in the middle of the plate with
a velocity of 0:1 m=s,

NuL=2 = 0:0296Re0:8
L=2Pr1=3 = 0:0296 ×

(
0:1 × 2:5

1:5 × 10−5

)0:8

×11=3 = 70:6 = hL=2k: (26)

As a result,

qsurface = h(Tsurface − T∞) = 28:2k(Tsurface − T∞): (27)

On the other hand, with the assumption of Prt = Pr, a CFD
program would calculate the heat transfer as

qCFD =−	Cp
(


Pr

+

t
Prt

)
@T
@y

∣∣∣∣
y=0

=−	Cp 
+ 
t
Pr

TD − Tsurface

D

=−k 
+ 
t



TD − Tsurface

D
: (28)

• D¿ �t .
Since TD = T∞ as D¿ �t ,

Kq
k(Tsurface − T∞)

=
qCFD − qsurface

k(Tsurface − T∞)

=

+ 
t



1
D

− 28:2: (29)

With constant viscosity model:

Kq
k(Tsurface − T∞)

=

+ 
t



1
D

− 28:2 =
101
D

− 28:2: (30)

With Xu’s zero-equation model:

Kq
k(Tsurface − T∞)

=

+ 
t



1
D

− 28:2

≈ 
t



1
D

− 28:2 = 230: (31)

With Prandtl’s zero-equation model:

Kq
k(Tsurface − T∞)

=

+ 
t



1
D

− 28:2

≈ 
t



1
D

− 28:2 = 2213: (32)

• D¡�t .
The temperature and velocity pro2les in the boundary

layer are approximated as [11]

T − Tsurface

T∞ − Tsurface
=
U
U∞

=
(y
�

)1=n
: (33)

Hence,

TD − Tsurface

T∞ − Tsurface
=
UD
U∞

=
(
D
�

)1=n

(34)

and

qCFD =−k 
+ 
t



TD − Tsurface

D

=−k 
+ 
t



T∞ − Tsurface

D

(
D
�

)1=n

: (35)
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With constant viscosity model:

Kq
k(Tsurface − T∞)

=

+ 
t



(
D
�

)1=n 1
D

− 28:2

=
101

D1−1=n�1=n − 28:2: (36)

With Xu’s zero-equation model:

Kq
k(Tsurface − T∞)

=

+ 
t



(
D
�

)1=n 1
D

− 28:2

≈ 0:03874U∞



(
D
�

)2=n

− 28:2

= 258
(
D
�

)2=n

− 28:2: (37)

With Prandtl’s zero-equation model:

Kq
k(Tsurface − T∞)

=

+ 
t



(
D
�

)1=n 1
D

− 28:2

≈ 2�2U∞



(
D
�

)2=n

− 28:2

= 2241
(
D
�

)2=n

− 28:2: (38)

Eqs. (30)–(32) and (36)–(38) can be illustrated as Fig. 3 by
using the common velocity pro2le of n= 7 and �= 0:13 m.

Fig. 3 indicates that:

(1) The use of small 2rst grid with the constant viscosity
turbulence model would increase the error in predicting
the heat /ux. A large 2rst grid seems better than a small
one.

(2) The error in predicting the heat /ux increases as the
grid resolution decreases when the other two zero-
equation models are used. A 2ner grid solution is
preferred with the two zero-equation models.

Further analysis of Eq. (37) indicates that qCFD=qsurface only
whenD=�=0:0004. In fact, under this condition, the 2rst grid
falls into the viscous sub-layer (�sub-layer=�=0:15–0:2). In
other words, the 2rst grid should be placed in the sub-layer
so as to obtain the correct heat /ux. Since 
t�
 in the
sub-layer, Eq. (35) can be re-arranged

qCFD =−k 
+ 
t



T∞ − Tsurface

D

(
D
�

)1=n

≈−k T∞ − Tsurface

D

(
D
�

)1=n

; (39)

Kq
k(Tsurface − T∞)

=
(
D
�

)1=n 1
D

− 28:2: (40)
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Fig. 3. Impact of turbulence model and 2rst grid size on the error of
convective heat transfer predicted by CFD.

To achieve Kq = 0; D should be 0:03 m if n = 7 and � =
0:13 m. The value is obtained based on the simple plate
/ow. Real indoor air/ows are more complicated. Usually,
the momentum and thermal boundary layer in room air-
/ows are thicker than those in the plate /ow. The simu-
lation experience from the literatures (e.g. [14]) indicates
that D = 0:05 m is a good value for most indoor air/ows.
The following section attempts to validate this value through
two case studies by using Xu’s zero-equation turbulence
model.

5. Numerical experiments for two typical room air�ows

5.1. Natural convection in a room with an aspect ratio of
2.5:7.9

In order to de2ne a reasonable CFD grid for room air-
/ows, this study 2rst models a natural convection /ow in
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Fig. 4. Con2guration of the experiment [15].

a full-size room as shown in Fig. 4. The room was with
a hot wall on one end and a cold wall on its opposite.
The room was used by Olson et al. [15] to measure /ow
and heat transfer. Olson also used a 1:5.5 scale physical
model containing R114 gas. The small-scale model was ge-
ometrically similar, had the same Reyleigh number, and
had the same dimensionless side wall temperature as the
full-scale room. The measurement found a good agreement
between the full-scale room and the scale model in /ow
patterns, velocity, temperature distributions, and heat trans-
fer. This study is particularly interested in the convective
heat transfer at the hot and cold walls and compares both
full-scale and model experimental results with the computed
results.

Fig. 5 presents the convective heat transfer at the hot and
cold walls for both the measurement and simulation where
Nusselt number is plotted as a function of Reyleigh num-
ber. Also included in the 2gure is the correlation from Bohn
et al. [16], Nu = 0:31Ra1=4, for enclosure /ows. The Nu
and Ra number are based on the temperature diDerence be-
tween the hot and cold walls. The experimental uncertainty
is approximately 10% for the scale model and 30% for the
full-scale room. The results show that the simulations with
the 2rst grid size of 0.002–0:005 m agree very well with
the data, exhibiting the expected trend of increasing Nu
with Ra. The other 2rst grid sizes produce the solutions that
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Fig. 5. Comparison of simulated heat transfer at enclosures with the data from [15].
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Fig. 6. In/uence of 2rst CFD grid size on the calculation of Nu at
Ra = 2:6 × 1010.

are more deviated from the measurements, as illustrated in
Fig. 6. Note that 2ner grids do not give more accurate results
with the zero-equation model as analyzed. Figs. 5 and 6
indicate that the 2rst grid size at 0:005 m is reasonably good
for the indoor natural convection cases.

5.2. Forced convection in a room with an aspect ratio of
5.5:3.7:3.4

The study further investigates a forced convection /ow
in an experimental chamber with the side-wall jet [17]. The
con2guration of the experimental facility is shown in Fig. 7.
The simulation uses three diDerent grid densities: 2ne grid
(66×51×45=151; 470 cells) has the 2rst grid size at 0:05 m
to wall; moderate grid (44×34×30=44; 880 cells) has the
2rst grid at 0:1 m; and coarse grid (22×17×15=5610 cells)
has the 2rst grid at 0:2 m. The area-averaged heat /uxes at
the room enclosures are then calculated and compared with
the measured data, as presented in Fig. 8.

The results show that the simulation with the 2rst grid
size at 0.05–0:1 m can provide reasonable solutions for such
a forced-convection /ow. This conclusion con2rms that by
Chen [14] who indicated that the 2rst grid size at 0:1 m is
a good value for most indoor air/ows.
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Fig. 7. Schematic of experimental facility [17].
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6. Negative h versus convergence and stability of ES

ES and CFD programs can exchange the convective heat
information on envelope interior surfaces through diDer-
ent methods. Zhai and Chen [18] enumerated the possible
data exchange methods and comparatively studied each of
them through theoretical analysis and numerical experiment.
According to the study, the fastest and most robust method
to exchange convective heat between ES and CFD is that
ES provides interior surface temperatures in a room to CFD
while CFD returns the convective heat transfer coe"cients h
and the air temperatures TD near the surfaces to ES. In order
to minimize the modi2cations in ES programs that use the
traditional de2nition of convection coe"cient h based on the
temperature diDerence of an interior surface and room air,
a corrected convective heat transfer coe"cients, hcorrected,
rather than h and TD, can be calculated from CFD results
and used in ES. The hcorrected is calculated in CFD through:

hcorrected = hA(Tsurface − TD)=A(Tsurface − Troom): (41)

Tcontrol=24 C 

Tair=19 C 

Tfloor=20 C 

Fig. 9. Illustration of negative h.

The h, calculated in CFD based on the /ow viscosity (Eq.
(2)), is always positive. However, hcorrected can be negative
in some particular cases.

Fig. 9 illustrates such an example in a room with dis-
placement ventilation. If assuming h = 4 W=m2◦C, at the
/oor surface, the heat gain from the /oor Q = h(T/oor −
Tair) = 4 W=m2. If Q is represented by the temperature dif-
ference between Tcontrol and T/oor, then Q=hcorrected(T/oor −
Tcontrol) = hcorrected(20–24) = 4 W=m2, one would obtain
hcorrected = −1 W=m2◦C. It may even cause the singularity
problem if Tcontrol = 20◦C.

Negative h may cause divergence and instability of an
ES simulation. ES solves the following matrix equation for
surface energy balance:

H · T = q; (42)

where

H=




h1;c +
N∑
k=1

h1k; r −h12; r · · · −h1N; r

−h21; r h2;c +
N∑
k=1

h2k; r · · · −h2N; r

· · · · · · · · · · · ·

−hN1; r · · · −hNN−1; r hN;c+
N∑
k=1

hNk; r




;

(43)

T =




T1

T2

· · ·
TN


 ; (44)

q =




q1; in + h1;cTroom

q2; in + h2;cTroom

· · ·
qN; in + hN;cTroom


 (45)
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and Ti is the temperature of interior surface i, hi;c is the
convective heat transfer coe"cient of surface i, hij; r is the
radiative heat transfer coe"cient between surface i and sur-
face j; qi; in is incoming heat to surface i (e.g. the conductive
heat through the envelopes), N is the total surface number.

Therefore,

T = q=H: (46)

From matrix theory [19], T has a unique solution if only if
|H| �= 0, i.e. H is nonsingular. H is singular if and only if
the rank of n×nmatrixH¡n, which means that at least one
row in H could be represented by the algebraic combination
of the others. Due to the randomness of the coe"cients in
H, it is impossible to anticipate the determinant of matrix H
in general. However, the energy equation for each surface
(each row in Eq. (42)), although connected with other sur-
faces, cannot be determined by energy balances of the other
surfaces. Therefore, matrix H is nonsingular, regardless of
the sign of h.

When iteratively solving Eq. (42) in ES, one may still
meet the instability and divergence problems. Matrix theory
[19] proves that the matrix should possess some properties
to guarantee a converged solution. Following is a brief dis-
cussion on the issue with Jacobi method.

Eq. (42) can be rewritten in the following manner:


1 h1;2=h1;1 · · · h1;N =h1;1

h2;1=h2;2 1 · · · h2;N =h2;2

· · · · · · · · · · · ·
hN;1=hN;N · · · hN;N−1=hN;N 1







T1

T2

· · ·
TN




=




q1=h1;1

q2=h2;2

· · ·
qN =hN;N


 ; (47)




T1

T2

· · ·
TN


=




q1=h1;1

q2=h2;2

· · ·
qN =hN;N




−




0 h1;2=h1;1 · · · h1;N =h1;1

h2;1=h2;2 0 · · · h2;N =h2;2

· · · · · · · · · · · ·
hN;1=hN;N · · · hN;N−1=hN;N 0







T1

T2

· · ·
TN


 :

(48)

By iteratively solving (48), one can obtain the solution with
a prescribed accuracy. Assuming after the mth iteration,

Tm = q′ −H′Tm−1: (49)

And if T is the exact solution, i.e.

T = q′ −H′T: (50)

It can be easily seen, upon subtraction, that

Tm − T=−H′(Tm−1 − T) = H′2(Tm−2 − T)

= (−1)mH′m(T0 − T): (51)

Hence,

lim
m→∞ (Tm − T ) = 0 if lim

m→∞H′m = 0: (52)

In other words, a necessary and su"cient condition for
the convergence of the Jacobi method is that H′m tends to
zero as m tends to in2nite. Such a limit occurs if the spectral
radius of H is less than unit. For the moment, a su"cient
condition can be

|H|¡ 1 (53)

since

|Hm|6 |H|m: (54)

From matrix theory, a su"cient condition when |H| is less
than unity is to satisfy the following condition:
N∑
j=1
j �=i

∣∣∣∣hi; jhi; i
∣∣∣∣¡ 1; i = 1; 2; : : : ; N: (55)

With positive h values, the elements in the matrix H of Eq.
(42) always satisfy∣∣∣∣∣∣hi;c +

N∑
j=1

hij; r

∣∣∣∣∣∣¿
N∑
j=1
j �=i

|−hij; r| (56)

which makes H a diagonal dominant matrix, assuring that
there exists a unique solution for the vector T.

When hi;c is negative, Eqs. (55) or (56) may not be satis-
2ed, which could cause divergence and instability during a
calculation. The divergence and instability may not always
occur, since satisfying Eq. (55) is only a su"cient condi-
tion. In general, the larger the real situation departs from Eq.
(55) (i.e. the larger negative hi;c), the higher the probability
of divergence and instability.

7. Conclusions

In a coupled simulation of ES and CFD, CFD provides
convective heat transfer on interior surfaces of building en-
velope to ES. Accurate prediction of the convective heat
transfer by CFD is crucial to the accuracy of building energy
calculation. The size of 2rst grid to an interior surface and
turbulence model in CFD are most important to the calcula-
tion of convective heat transfer. The convective heat transfer
determined from the 2rst grid cell, rather than from a pre-
scribed location, should be used in the coupled simulation.
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This investigation found that the calculated convective
heat transfer depends on the size of 2rst grids by analyzing
laminar /ows of forced and natural convection over a /at
plate. The error of convective heat transfer due to the size of
2rst grids (2D) is on the order of O(D2) for laminar forced
convection and O(D) for natural convection.

This study further discussed the combined eDect of the
size of 2rst grids and turbulence model on the convective
heat transfer. Three zero-equation models have been used:
the constant viscosity model, Xu’s model, and the Prandtl
mixing length model. A 2ner grid distribution in CFD does
not always lead to a more accurate solution when the con-
stant viscosity turbulence model is used or when the 2rst grid
is in the sub-layer boundary with the other zero-equation
turbulence models. Based on the theoretical analysis and nu-
merical experimentation, the study suggests a universal 2rst
grid size of 0:005 m for indoor natural convection air/ows
and 0.1m for indoor forced convection air/ows.

This investigation also found that the convective heat
transfer coe"cients, using traditional de2nition for building
energy simulation, could become negative for room with
strong temperature strati2cation, such as with displacement
ventilation. The theoretical analysis shows that a negative
convective heat transfer coe"cient may cause divergence
and instability in energy simulation.
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