Dominant Patterns of Climate Variability in the Atlantic Ocean during the Last 136 Years

Yves M. Tourre, Balaji Rajagopalan, and Yochanan Kushnir
Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

(Manuscript received 15 July 1997, in final form 27 July 1998)

ABSTRACT

Dominant spatiotemporal patterns of joint sea surface temperature (SST) and sea level pressure (SLP) variability in the Atlantic Ocean are identified using a multivariate frequency domain analysis. Five significant frequency bands are isolated ranging from the quasi-biennial to the quasi-decadal. Two quasi-biennial bands are centered around 2.2- and 2.7-yr periods; two intraseasonal bands are centered around 3.5- and 4.4-yr periods; the fifth band at the quasi-decadal frequency is centered around 11.4-yr period. Between 1920 and 1995 the quasi-decadal band is less prominent compared to the quasi-biennial bands. This happens to be the period when SLP gradually increased over the Greenland-Iceland region. The spatial pattern at the quasi-decadal frequency displays an out-of-phase relationship in the SLP in the vicinity of the subtropical anticyclones in both hemispheres indicative of an out-of-phase quasi-decadal variability in the North and South Atlantic Hadley circulation. The quasi-decadal frequency also displays an out-of-phase relationship in the SLP in the north and south of the mean position of the intertropical convergence zone (ITCZ). This short-livedurance, lasting for approximately two years, supports the argument that a tropical SST dipole pattern is one of the characteristics of the quasi-decadal signal. All five frequency bands represent some extent of fluctuations of the North Atlantic Oscillation and are associated with tropical Atlantic Ocean warming (cooling) with different spatial evolution. The two intraseasonal bands show opposite SST evolution to the south of the ITCZ, that is, southernmost evolution from the western tropical Atlantic for the 3.5-yr period and westward spreading from the eastern tropical Atlantic for the 4.4-yr period. Moreover, a significant coherence (with a 1-yr phase lag) is found between the SST time series along the equatorial Atlantic obtained from the 3.5-yr period, and the SST time series in the Nino-3 area in the Pacific. It is cautiously argued that the 3.5-yr period is largely associated with the global El Ninõ Southern Oscillation phenomenon, while the evolution of the 4.4-yr period depends more upon Atlantic local conditions.

1. Introduction

In the Pacific Ocean, where the El Ninõ-Southern Oscillation (ENSO) phenomenon dominates the interannual variability, there is a generally understood scenario of coupled ocean-atmosphere tropical processes (Cane and Zebiak 1985). Consequently, understanding and predicting the Pacific El Ninõ phenomenon have considerably improved in the last 10 years (Cane et al. 1986; Barnett et al. 1988; Nitta et al. 1994; Chen et al. 1995). The relationship between sea surface temperature (SST) and sea level pressure (SLP) is well documented (e.g., Rasmussen and Arkin 1983) and since then distinctions have been made between the global ENSO signal (Kawamutu 1994; Lanzante 1996; Tourre and White 1995), the decadal climate variability (Latif and Barnett 1994), and the "ENSO-like decade-to-century variability" (Zhang et al. 1996). The Atlantic climate variability, on the other hand, is characterized by a strong basin-wide and broad-banded coherence between ocean and atmosphere anomalies. For example, in the equatorial Atlantic "conditions at times (1963, 1973, or 1984) resemble El Ninõ" (Mfle 1980; Philander 1990) and a "significant part of observed variability can be described by an equatorial mode akin to ENSO" (Zebiak 1993). In the North Atlantic, surface atmospheric circulation is dominated by the semi-permanent Icelandic low and Azores high. The intrannual fluctuations of these cells are anticorrelated and contribute to the North Atlantic oscillation (NAO). The NAO displays quasi-biennial, quasi-decadal, and multidecadal variability (Hurrell 1995). Quasi-decadal to interdecadal variability has been identified in the Atlantic ocean-atmosphere system as well (Deser and Blackmon 1993; Kushnir 1994; Levitus et al. 1994; Houghton 1996; Mann and Park 1996). Mehta and Delworth (1995) present evidence that SST in the tropical Atlantic Ocean displays low-frequency variability.
These characteristics of the Atlantic climate spectrum may cause analysis of time- and space-limited domain to be misleading. Work on interannual variability in the Atlantic Ocean can be found in the seminal study of Bjerknes (1964), where large-scale SST and corresponding SLP anomalies were first identified at the interannual timescale. Bjerknes suggested that the rapid year-to-year SST variability arises from ocean-atmosphere heat fluxes forced by changing winds. He also suggested that decadal or longer fluctuations are related to changes in the ocean circulation, particularly the subtropical gyre, in response to the long-term changes of the atmospheric circulation (e.g., changes associated with the strength and location of the subtropical high). More recently, Levitus (1989) was able to identify, from hydrographic data, a weakening in the strength of the subtropical gyre in the early 1970s compared to its state in the late 1950s. Deser and Blackmon (1993) and Kushnir (1994), using longer surface datasets, found patterns of correlated variability between the atmosphere and the ocean associated with low-frequency physical mechanisms corroborating, in part, the results obtained by Bjerknes.

In general, regions with maximum sensible heat, latent heat, and momentum exchanges are not always congruent in space and time (Budyko 1982). Therefore, identifying processes associated with observed surface patterns of coherent low-frequency ocean–atmosphere variability presents a serious challenge. It has been suggested that there is interannual correlation between the tropical and extratropical North Atlantic in both the atmosphere (NoBee 1985) and the ocean (Luo and Nuth 1990). The robustness of these correlations with time, as well as their frequency dependence have yet to be fully tested. For example, Houghton and Trouet (1992) and Enfield and Mayer (1997) find that the leading modes of SST interannual variability north and south of the ITCZ are uncorrelated at zero time lag. If these SST fluctuations are due to wind circulation and associated changes in the strength and/or position of the Azores and Saint Helens high, then climate variability of the Atlantic is more complex than previously thought. The complexity in isolating climate signals is further enhanced since SST anomalies in the equatorial Atlantic Ocean are smaller than in the Pacific Ocean, and the equatorial cold tongue is much weaker (Philander 1990; Zebib 1993; Jin 1996).

Finally, when comparing climate variability in the Pacific and Atlantic Oceans, there is evidence of an inverse relationship between SST in the eastern Pacific and the tropical Atlantic (Covey and Hastenrath 1978), the Southern Oscillation and the SLP in the South Atlantic Ocean (Wolter 1989), and El Niño and precipitation in northeastern Brazil (Caviedes 1973; Hastenrath and Heller 1977; Enfield 1996).

Most of the research involving the analyses of SST and SLP datasets from the Atlantic Ocean have focused on the North Atlantic region and it is only recently that the South Atlantic was studied (Venegas et al. 1997). In addition, almost all previous research has analyzed the data in the time domain generally by using principal component analyses or similar techniques. In an effort to better understand the spatial and temporal characteristics of Atlantic variability associated with band-limited signals, we depart from the time domain approach in this study and investigate the space–time variability of the Atlantic ocean–atmosphere system (80°N–30°S) using a joint SST and SLP analysis in the frequency domain over the Atlantic basin for a 136-yr period (1856–1991). The datasets and the method used are described in section 2. The space–time evolution patterns of SST and SLP corresponding to the dominant frequencies are described in section 3. In section 4 we discuss the results in the context of previous work and also evaluate plausible mechanisms. Summary, remarks, and conclusions are found in section 5.

2. Data and method

From the recently gridded 136-yr-long (1856–1991) global SST and SLP datasets by Kaplan et al. (1997, 1998), monthly subsets for the Atlantic domain on a 5° × 5° grid and 4° × 4° grid of SST and SLP, respectively, are obtained. Because of the sparse coverage in the South Atlantic, only data north of 30°S are analyzed in this study. Essentially, the data reduction by Kaplan et al. involves computing leading empirical orthogonal functions (EOF) from the most recent high-quality data (U.K. Meteorological Office Global Ocean Surface Temperature Atlas for SST and the Comprehensive Ocean–Atmosphere Data Set for SLP). EOFs are then used for fitting a first-order linear model of time transition. The optimal estimation is obtained using EOF projection of the analyzed field in order to obtain a “reduced space.” From the estimation of the available data covariance patterns, the method fills gaps, corrects sampling errors, and produces spatially and temporally coherent datasets.

The diagnostic method used for analysis is the frequency domain singular value decomposition (SVD) technique developed by Mann and Park (1994, 1996, hereafter MP94 and MP96, respectively). Time domain decomposition techniques such as principal component analysis or channel singular spectrum analysis are best suited for broadband features. They are poor at isolating band-limited signals that are spatially coherent, quasiperiodic, or unstable on a slowly varying noise background. In such situations the frequency domain approach is optimal (MP94). Mann and Park (1999) compare these two approaches in great detail and also demonstrate the utility of the frequency domain approach using synthetic examples.

The paradigm that the Atlantic ocean–atmosphere system exhibits spatially coherent band-limited variability on a slowly varying noise background motivated our investigation of the joint SST–SLP variability using the frequency domain approach. The goal of this paper
is to isolate dominant frequencies at which the Atlantic basin exhibits significant coherent variability and subsequently examine the corresponding spatial patterns of SST and SLP anomalies. The latter will be in general small compared to the amplitude of climate variability in the Atlantic Ocean. However, it should be kept in mind that the total amplitude, over any significant frequency band, would be an integration of the amplitudes from individual frequencies within that band. The method is briefly described below. For greater details regarding the method used, refer to MP94 and MP96.

The time series at each grid point are first transformed from the time domain to the spectral domain using the multitaper spectral method (MTM) (Thomson 1982; Park et al. 1987). At each frequency \(f \) for each grid-point series, a small number \(K \) of independent spectral estimates are computed using \(K \) orthogonal Slepian tapers. The tapers can be thought of as a kernel or wavelet function. In addition, the tapers, being orthogonal by construction, capture independent information. The tapers average over a half-bandwidth of \(f \Delta \bar{f} \) centered on the frequency \(f \). Here, \(f \Delta \bar{f} = 1/N \Delta t \) (\(\Delta t \) is the sampling interval, equal to one month in this study, and \(N \) is the number of data points) is the Rayleigh frequency (the least resolvable frequency). Of the \(K \) tapers only the first \(2K - 1 \) tapers are useful at spectral leakage. The parameters \(K \) and \(\rho \) provide spectral degrees of freedom and frequency resolution, respectively. A larger \(\rho \) implies averaging over a bigger bandwidth, and vice versa. We choose \(\rho = 2 \) and \(K = 3 \), as in MP94 and MP96, which provides enough spectral degrees of freedom for a signal-to-noise ratio decomposition, while allowing reasonably good frequency resolution.

SST and SLP time series are standardized at each grid point. The anomalies are derived from long-term means (136 yr) at each point, and the standard deviations are computed at each point as well. The gridpoint series are weighted with respect to latitude. At each frequency \(f \), \(K \) independent spectral estimates of the standardized time series are calculated as

\[
W^m(f) = \sum_{n=1}^{N} w_n^{(m)} f_n \phi_n e^{2\pi i f_n t_n},
\]

where \(m = 1, \ldots, M \) are the grid points (for the concatenated SST and SLP fields); \(n = 1, \ldots, N \) are the time points; \(k = 1, \ldots, K \) are the number of spectral estimates; and \(\{ w_n^{(m)} \} \) are the weights from the \(k \)th data taper. Thus, we have \(K \) spectral estimates at each grid-point series, resulting in a matrix of size \(M \times K \) at frequency \(f \).

A complex SVD is performed on this matrix, which gives \(K \) orthonormal left and right eigenvectors representing the spatial and frequency domains of EOFs of SST and SLP anomalies, respectively, and \(K \) singular (or eigen) values representing the shared variance captured by each mode (or taper) within a given narrow-frequency band (or "local variance"). The fractional variance (or "local fractional variance") captured by each mode is then computed. The process is repeated for a number of frequencies, and a plot of the spectrum of fractional variance explained by the first mode at all the frequencies is readily obtained. Significance of peaks in the fractional variance spectrum is determined from a comparison with confidence limits obtained through a bootstrap procedure (Eaton 1990). Here the fields are permuted in time to keep the spatial structure intact. One thousand permutations are generated and in each case the local fractional variance at each frequency for all the \(K \) modes is derived. From this ensemble, the 99th, 95th, 90th, and 50th percentiles are computed. There are usually a number of peaks in a given frequency window (or cluster). Consequently, the significance of a given level is obtained from the averaged highest value of fractional variance within the broader spectral band, obtained by using a local polynomial smoothing procedure (Lall et al. 1999).

When the above analysis is performed in a moving time window, an estimation of the frequency variations over time is obtained. A 60-yr moving window is used in this paper so that the evolution of the fractional variance spectrum is displayed. The left and right orthonormal eigenvectors are used to reconstruct spatial and temporal patterns at each frequency (refer to MP94 and MP96 for more details).

While the method used in this paper identifies joint SST–SLP dominant frequencies, the physical interpretation of the mechanisms associated with these frequencies can be cumbersome. This is why, prior to interpretation, the SVD joint spectrum is smoothed so that the spatial reconstructions are computed from the lead and well-separated smoothed peaks.

3. Results

The spectrum of the first singular values, and its evolution for the whole time period, are displayed in Fig. 1. For the whole time period, significant peaks at the 95% level exist in three broad bands (Fig. 1a) the quasibiennial band (skewed around a 2.7-yr period), the interannual band (centered around periods of 3.5 and 4.4 yr), and the quasi-decadal band (skewed around an 11.4-yr period). A smoothed quasi-biennial timescale around 2.2-yr period is also significant at the 90% level. A millidecadal peak (around 50-yr period, significant at the 90% level) can also be seen in the unsmoothed curve of Fig. 1a.

The "evolutional" SVD spectrum (using a 60-yr moving window) significant above the 90% level is presented in Fig. 1b. From approximately the turn of the century until the mid-1930s there is a gap in the power of the period centered around 3.5 yr. During that same period the power of the signal centered around the 4.4-yr becomes more significant. MP96, in their joint SST–SLP analysis of the Northern Hemisphere also find significance spectral power in this time period. Other im-
Important features are the highly significant quasi-biennial and quasi-decadal signals around the 2.7-yr and 11.4-yr periods, respectively. The quasi-biennial signal dominates when the quasi-decadal signal is weaker and less significant. The quasi-biennial signal is conspicuous from 1920 to 1955 when the quasi-decadal signal is below the 90% confidence level. These results will be discussed in further detail in section 4e.

In the subsequent sections, joint spatial patterns of SST and SLP at the dominant frequencies, identified from Fig. 1a, are described. The evolution of the spatial patterns through half their cycle is shown in six panels. It was decided, arbitrarily, to start the first panel (Figs. 2a, 3a, 4a, and 5a) where the SLP anomalies contribute to a weakening of the Azores high. The patterns evolve through a "perfect" cycle; thus the seventh panel (not shown) is the same as the first panel with opposite polarity. The SSTs are shown in thin contours and shading and the SLPs are shown in heavy contours. The contour intervals are kept constant in all the figures for ease of comparison. The anomalies presented hereafter are in general small since they are computed over narrow bands, as explained in section 2.

a. The quasi-biennial period

Two quasi-biennial spectral peaks are centered around periods of 2.2 yr and 2.7 yr (Fig. 1a). The evolution of the spatial patterns at both these periods are very similar. Consequently, only patterns corresponding to the 2.7-
yr period are shown in Fig. 2. The anomalies are from 0.2 mb (Fig. 2d) to 0.6 mb (Fig. 2b). The SLP anomalies form a dipole akin to the NAO. The maximum anomalous SLP occurs during the part of the cycle in which weak, positive SST anomalies build up in the eastern equatorial ocean, in the regions where cold water usually dominate. The SST anomalies then expand westward along the equator and northward along the west African coastline. The tropical Atlantic Ocean is alternatively warmer or colder (up to 0.2°C) every 16 months. The maximum expansion of SST anomalies in the Tropics (Fig. 2c) occurs 3 months after maximum negative SLP anomalies between Newfoundland and western Europe (Fig. 2b).

b. The interannual bands

Two distinct spectral peaks centered around 3.5- and 4.4-yr periods are identified at the interannual timescales. These frequencies capture more than 60% of the
fractional variance in a narrow band centered around them (see Fig. 1a).

1) The 3.5-yr Period

Figure 3 shows the evolution of the anomalies for half this period. Maxima of SLP anomalies in the North Atlantic form a dipole-like pattern akin to the NAO. The largest anomalies (0.6 mb) are identified first in the Denmark Strait and then west of the Azores (Figs. 3c and 3d). The anomalies persist for approximately half a year with little motion and then the pattern mentioned above collapses (Fig. 3e). The strongest anomalous SLP gradient is found between 45°–55°N and 20°–50°W (Figs. 3b and 3c). In the tropical Atlantic, SLP anomalies are weaker (0.1 mb).

In the North Atlantic Ocean, SST anomalies are rather weak despite the strong SLP gradient mentioned above (Fig. 3d). Weak SST anomalies (0.1°C) at 50°N and 30°–40°W occur 3–6 months after the maximum anomalous SLP gradient. More specifically, positive SST anomalies peak (0.1°–0.2°C) between 50° and 55°N, and between 10° and 20°N (Figs. 3d and 3e).

SST anomalies appear along the West African coastline, in the region where climatological features such as the cold Canary current and coastal upwelling dom-
2) THE 44-YR PERIOD

Figure 4 shows the evolution of the spatial patterns associated with half this period. The largest SLP anomalies are identified between Iceland and the northern tip of Greenland (6–8 mb), and at 35°N between 35° and 65°W (2 mb, Fig. 4b), they persist for approximately 3/4 of the cycle with little motion. To the south between 25° and 35°N and between 30° and 50°W, the anomalies collapse (25°N, 40°W, Fig. 4c), a year later. In the western North Atlantic Ocean, maximum positive SLP anomalies are found over southern Greenland (Fig. 4c).
Positive SST anomalies (up to 0.3°C) appear in the 40°-60°N zonal band, where the SLP gradient is such that westerly winds are weakened (Figs. 4c and 4d). This could reduce storm activity during winters occurring during the cycle. Along 30°-40°N negative SLP anomalies are found 15-20 degrees of longitude east of the negative SST anomalies (Figs. 4c and 4d). Peak SST anomalies lag peak SLP anomalies by several months. Contemporaneously, positive SST anomalies (0.1°-0.3°C) are the dominant feature in the North Tropical Atlantic Ocean (Figs. 4c, 4d, and 4e) where northeasterly winds must be weaker. In the South Tropical Atlantic, negative (positive) SST anomalies appear offshore of central Africa (Gabon, Congo, and Angola, Figs. 4c). Subsequently, these anomalies expand westward (Figs. 4d and 4e).

c. The quasi-decadal period

The prominent quasi-decadal peak around the 11.4-yr period can be seen in Fig. 1a. The fractional variance captured at this frequency is significant at the 99% level. The spatial patterns associated with the quasi-decadal band are displayed in Fig. 5.

In the North Atlantic the SLP anomaly patterns are reminiscent of the NAO pattern. An out-of-phase re-
relationship also occurs between the areas where the subtropical anticyclones in both hemispheres are found the Azores high to the north and the Saint Helena high to the south. The difference in signs between the SLP anomalies to the north and the subtropical highs leads to the conclusion that quasi-decadal variability is also present in the winds at all latitudes. In Fig. 5, where the maximum SLP anomalies gradient is visible (Figs. 4a, 4b, and 4c), it can be inferred that when the westerlies between 50° and 65° are weaker than normal, the northeasterly trades are also weaker than normal. At the same time the southeasterly trades are stronger than normal.

An in-phase relationship between SST anomalies in the 50°–60°N zonal band and the North Tropical Atlantic Ocean (north of the mean position of the ITCZ) is readily seen (Figs. 5b, 5c, and 5d). Furthermore, a coherent east–eastward-oriented pattern of SST anomalies is found just south of the Gulf Stream extension and along the North Atlantic Current (Figs. 5a–f). SST anomalies are also found in the vicinity of the North Atlantic Drift (Fig. 3a with reversed polarity).

SST anomalies in the North Atlantic Ocean, north and south of the Azores high have the same polarity. In contrast SST anomalies have opposite polarity north and south of the mean position of the ITCZ (Fig. 5d). The distribution of SST anomalies fits well with the in-phase relationship between midlatitude westerlies and northeasterly trade winds and the out-of-phase relationship of Atlantic northerly and southeasterly trade winds on the timescale, as previously discussed. The evolution of tropical SST during the decadal cycle is thus marked by the appearance of a seesaw pattern of SST during the growth phase of the pattern.

4. Discussion

All spatial patterns corresponding to the four frequencies begin arbitrarily (Figs. 2–5), with a weaker than normal Azores anticyclone and a weaker than normal Icelandic low. All of these SLP anomalies contribute to a negative NAO index at the beginning of each cycle. In this section we compare our results with relevant previous work and also discuss possible physical mechanisms involved with the dominant signals that we have identified.

a. The quasi-biennial period

Wagner (1971), in an analysis of a 66-yr Northern Hemisphere SLP dataset (north of 20°N), and other investigators (e.g., Landsberg et al. 1963), identified tropospheric quasi-biennial signals or “pulses.” Wagner concluded that the spectral power in a band centered at a period of around 2.5 yr displayed maximum amplitude in both SST and SLP. The maxima associated with the spectral band were located near the centers of the Icelandic low and the Azores high during winter. These results were corroborated later by Angell and Korshover (1974), who also argued that the quasi-biennial fluctuations and their different frequencies are linked to the southwest–northeast movement of the “centers of action,” that is, the Icelandic low and the Azores high. They showed that the Azores high becomes weaker when displaced southward. A quasi-biennial oscillation was subsequently identified in the temporal record of the NAO by van Loon and Rogers (1978). More recently, quasi-biennial signals were identified in SLP over the Northern Hemisphere (Trenberth and Shin 1984); SLP surface wind, and air temperature data from the north Atlantic Ocean (Gordon et al. 1992; D'Asaro and Blackmon 1993); and from global analysis of air temperature and SST (MP94).

In our analysis we find two spectral peaks in the vicinity of the 2.5-yr period. The evolution of SLP anomalies in the North Atlantic is consistent with the results obtained by Angell and Korshover (1974). The contribution of the biennial signal to SLP variability there is particularly evident after ~1920 (Fig. 1b). The shape and evolution of the patterns of tropical SST anomalies from the Angola coastline (Figs. 2a–d) seems to indicate that the anomalous local currents (e.g., the South Equatorial Current, or SEC) play a preponderant role. It is interesting to note that Kanda et al. (1996), using band-pass-filtered biennial variations of SST obtained from satellite data, concluded that SST evolution in the tropical Atlantic Ocean is primarily controlled by lateral heat transport and not air–sea heat fluxes. Negative SST anomalies from 60°N to 30°S are associated with a warmer tropical ocean. The fact that the maxima in SLP and SST anomalies are far apart deserves further investigation.

b. The interannual band

During the last two decades there has been considerable evidence of a relationship between the negative phase of the Southern Ocean Index and equatorial Atlantic warm events (Covey and Hastenrath 1978; Hastenrath et al. 1987; Wolter 1989; among others). Modelling experiments have established links between the intensity of the tropical Atlantic trades and the ENSO phenomenon (Toure et al. 1985; Carton and Huang 1994; Delecluse et al. 1994). Zebiak (1993) discussed the importance of meridional SST gradients in the Atlantic domain and its association with tropical Atlantic Ocean circulation. Curtis and Hastenrath (1995), from a composite study, describe the evolution of meridional SST gradients in the tropical Atlantic Ocean. Wagner (1996) proposed physical mechanisms associated with the tropical meridional SST gradient. Spectral peaks around 5-yr period were found by Veiras et al. (1997) in the South Atlantic from a joint analysis of SST–SLP in the time domain, based on the most recent 50 yr of data. They associate this variability with a meridional displacement of the ITCZ and the Saint Helena anti-
cyclone (the Southern Hemisphere subtropical high). Sperber and Hameed (1993) identify a 3.6-yr period in the northern tropical Atlantic SST, which they argue is one of the timescales at which the Walker circulation interacts with the tropical Atlantic circulation and modulates the track of the Atlantic ITCZ. Peterson and White (1998) identified an Antarctic circumpolar wave, with a period of 4–5 yr, transmitting climate anomalies in the Southern Oceans, including the South Atlantic Ocean.

1) The 3.5-yr period

For the 3.5-yr period it is found that, in the North Atlantic, SST anomalies are rather weak even in the presence of large SLP anomalous gradient. The SLP anomalies are such that northeasterly trade winds are weaker in the northern tropical Atlantic Ocean and along the northwest African coastline. When a similar analysis is performed globally (not shown) we found that for approximately the same 3.5-yr period, the patterns displayed in Fig. 3a correspond to the time when a fully developed El Niño exists in the eastern Pacific. The southeasterly trade winds in the equatorial Atlantic will be at their peak strength, the negative SST anomaly being largest in the equatorial Atlantic. The ITCZ will then be found further north with weaker coastal upwelling and reduced heat loss between 10° and 20°N (Curtis and Hastenrath 1995). At the equator and at the beginning of the arbitrary defined cycle (Fig. 3a), negative SST anomalies and weak positive SLP anomalies are observed. Tropospheric subsidence and hydrostatic adjustment of the atmosphere to cold SST (Covey and Hastenrath 1978; Lindzen and Nigam 1987) will both increase SLP. The positive SST anomalies in the South Atlantic Ocean (at 30°S) expand equatorward following geostrophic flow patterns of the upper ocean (Reid 1989; Stramma 1991) and merge (west of 20°W) with positive SST anomalies from the north. These anomalies are reinforced by Ekman downwelling in those regions (Curtis and Hastenrath 1995). The merging on the western tropical basin might be due to a tendency for the ITCZ to create, further east, an initial potential vorticity barrier that inhibits direct flow along the thermocline layer from subtropical region toward the equator (Lu and McCreary 1995). From there they propagate east–southeastward (Figs. 3a, 3b, and 3c, all with reverse polarity). This anomalous propagation follows very closely the anomalous gradient of the sea level topography computed from the oceanic geopotential thickness for the 0–1000-m layer (Levitus and Oort 1977). A similar movement is noticed in the heat storage anomalies associated with the ENSO phenomenon (Touma and White 1999, manuscript submitted to J. Climate).

The tendency for a warmer southern tropical Atlantic Ocean during ENSO peaks, as in the 1980s, is seen in the global rotated EOF analysis of Touma and White (1995). To gain further insight about this relationship, we compute the coherence and phase between the SST NINO3 time series (representative of the Pacific ENSO) and reconstruct time series averaged over grid points along the equatorial Atlantic. We find the largest significant coherence of 0.65 (99% level of confidence) at around 12-month lag, for the 3-yr period. This seems to suggest, for example, that the 3-yr signal contributes to a weakening of the Azores high (Figs. 3a–d) and that about one year after a fully developed El Niño in the eastern Pacific, a warming of the equatorial Atlantic Ocean is noticeable, with maximum SST anomalies (up to 0.2°–0.3°C) occurring in the Gulf of Guinea (Hisard 1980). This corroborates well with results by Philander (1990), Touma and White (1995), and Latif and Barnett (1995). During the Atlantic warm event of 1984, after the 1982–83 “ENSO of the century” in the Pacific Ocean, a South Equatorial Counter Current (SECC) was monitored (Hisard and Hen 1987). An eastward propagation of SST anomalies was observed during the Atlantic warm event of 1984 (Henin and Hisard 1987; Reverdin and McPhaden 1986). It was also concluded that during this period positive SST anomalies between the equator and 10°S and east of 20°W were indicative of a weaker SEC and a weaker Benguela Current system (Carton and Huang 1994; Philander 1986; Reverdin et al. 1991).

The above arguments reinforce the idea of a specific Atlantic response to the Pacific ENSO signal as transferred through the “atmospheric bridge” as suggested by Lau and Nath (1996). The reason for the signal to be transmitted at this particular frequency and the potential role played by the atmosphere in the midlatitudes remain unclear.

2) The 4.4-yr period

The evolution of the negative SST anomalies south of the ITCZ indicates the presence of stronger southeasterly trade winds (Figs. 4c and 4d). The lack of SLP data south of 30°S does not permit us to isolate a definite joint SLP anomaly pattern there. SLP anomalies in the vicinity of the Azores high are negative, but they are somewhat weaker when compared with SLP anomalies for the 3.5-yr period in the same region (Figs. 3c and 4c). South of the Azores high weaker northeasterly and stronger southeasterly winds, compared to the 3.5-yr period, further tend to displace the ITCZ northward. As a result of the stronger local meridional winds, coastal upwelling gets enhanced along the Angola coastline and is extended far westward (Shannon et al. 1986), while the strength of the Angola gyre (Gordon and Bosley 1991) tends to be reduced. When the southeasterly trade winds are relaxed, a warming occurs in the same region primarily due to heat redistribution by the SEC and SECC (Philander and Pacanowski 1981). Finally, SST anomalies are found further north in both hemispheres in regions where there is also maximum Ekman drift in the mean (Mellor et al. 1982; Arnault 1987).
Simultaneous conclusions from modeling studies were argued by Zebiak (1993) and Carton and Huang (1994).

c. Comparisons of the two interannual periods

From the way the interannual cycles are reconstructed in this paper and from a global analysis [not shown and already mentioned in section 4b(1)], it can be deduced that the atmospheric linkage between the eastern Pacific and Atlantic Oceans is increased during the prominent 3.5-yr period of the ENSO phenomenon. This is, for example, when negative SLP anomalies are found in the eastern Pacific, negative SLP anomalies are found in the vicinity of the Azores high, and the SLP increases in the equatorial and South Atlantic through presumably tropospheric subsidence. Interestingly enough, when we performed additional spectrum analyses of the winter NAO and its two components, the Azores high and the Icelandic low, a significant interannual signal (90% confidence level) is centered around 3.5 yr. The linkages between the eastern Pacific SLP anomalies field associated with ENSO and the intensity of the Azores high could be associated with "an equivalent barotropic wave-like response in the North Pacific–North American" region as mentioned by Lau and Nath (1996). Lau and Nath were also able to associate warm ENSO events with a dipolelike SST pattern in the western North Atlantic (negative SST anomalies along the northeastern seaboard of North America associated with negative anomalies in latent and sensible fluxes). More work remains to be done in this domain.

The SST evolution in the tropical Atlantic is different for the 3.5- and 4.4-yr periods. In the southeast Atlantic, SST anomalies propagate and/or expand in opposite directions, that is, southeastward for the 3.5-yr period and northward for the 4.4-yr period. A fundamental difference between the two cycles is that colder equatorial SST are associated with higher tropical SLP for the 3.5-yr period, while for the 4.4-yr period this relationship breaks down. Since the joint SST–SLP evolution north of the ITCZ display similarities between the two cycles, the difference in the SST evolution south of the ITCZ must be linked to independent local atmospheric and oceanic conditions in the South Atlantic Ocean.

It is well known that the position of the ITCZ in the tropical Atlantic is associated with local conditions, such as the intensity of the northwest African heat low and the strength and position of the Saint Helena anticyclone. In the ocean these changes correspond to changes in the strength of the south subtropical gyre. The position of the ITCZ displays seasonal, interannual, and low-frequency variability. For example, when spectral analysis is performed on time series that depict the anomalous location of the ITCZ, the two intermediate frequencies discussed in this paper are clearly identified (not shown). Remote forcing, including ENSO, also influence the position of the Atlantic ITCZ. It has been shown that the latitude of the ITCZ is determined by the meridional SST gradient, the meridional SLP gradient, and the relative intensity of the tradewinds, northeasterlies versus the southwesterlies (Covey and Hastenrath 1978; Hameed et al. 1997; Wagoner 1996; Wagoner and Strokes 1997). We propose that the differences in the SST evolution south of the ITCZ between the 3.5- and 4.4-yr periods reside in the relative difference in the strength of the tradewinds system and the changes in the oceanic circulation due to both local and remote forcing. For both cycles, when the NAO is weaker the northeasterly tradewinds are weaker. Accordingly the ITCZ is found farther north. Furthermore, when El Niño is fully developed there is an indication of positive equatorial SLP anomalies (Figs. 3a–c). For the 4.4-yr period (Fig. 4) weak positive SLP anomalies are found further south (Figs. 4d and 4e) and could be associated with a stronger and/or northward displacement of the Saint Helena anticyclone. This movement has been mentioned by Venegas et al. (1997). Resulting equatorial warming is then influenced by local conditions with weaker northeasterly tradewinds. From the south, SST anomalies could also penetrate the Tropics by entering the Benguela Current system and subsequent northward spreading from the SEC. Finally the possible link with the 4-5-yr period of the Antarctic Circumpolar wave and northerly Ekman layer flow propagation identified by White and Peterson (1996) and Peterson and White (1998) deserves further investigation.

d. The quasi-decadal period

The Atlantic climate variability is characterized by a strong coherence associated with this cycle. Deser and Blackmon (1993) find that SST quasi-decadal variability is associated with the western Atlantic oscillation, a geopotential pattern in the upper troposphere (Wallace and Gutzler 1981). Molinari et al. (1997) were able to identify the same timescale variability in the subsurface temperature (down to 400 m) in the midlatitudes of the western North Atlantic Ocean. From coupled-model runs, Grötzner et al. (1998) identify low-frequency variability of around a 17-yr period in their joint SST–SLP of the Atlantic basin and attribute it to unstable air–sea interactions involving the subtropical gyre and the NAO. In their experiment the ocean responds to low-frequency wind stress curl variations and serves as a memory in the coupled system. The intensity of the Gulf Stream extension and the subtropical gyre respond accordingly and keep the coupled system oscillating. Similar findings were made by Hansen and Bezdick (1986) and Halliwell (1995). In the subtropical gyre, the latent heat flux is found to force quasi-decadal SST anomalies (Cayan 1992). North of 30°N the SST anomalies closely follow the mean transport stream function derived from wind stress and subsurface density fields (Melor et al. 1982). The amplification of SST anomalies to the north of 30°N, the region where the barotropic flow associated with the subpolar gyre (Hogg et al. 1986), separates
from the Sargasso gyre. Sutton and Allen (1997) find a similar evolution in SST anomalies when they analyzed SST for a shorter time period (1945–89).

In our joint SST–SLP analysis, the spatial distribution of SLP anomalies is a reminder of the NAO standing index characteristics. The joint SST and SLP patterns associated with an 11.4-yr period (as shown in this paper) points to a strong midlatitude NAO–SLP linkage and a strong tropical–extratropical connection at decadal timescales. This result emphasizes a timescale defined by the ability of upper-ocean anomalies to persist, even after the atmospheric anomalies decay, and during which ocean–atmosphere interaction is maintained on the Atlantic basin scale.

Hurrell (1995), Halliwell (1995), and Kushnir (1996) suggest that positive SST anomalies in the western and trade wind belts appear simultaneously when the anomalous SLP gradient is decreased. This is corroborated by the relative distribution of SST and SLP anomalies in Fig. 5.

In the tropical Atlantic, quasi-decadal variability is associated with an out-of-phase relationship in the SST to the north and south of the ITCZ. This is consistent with previous analyses from Houghton and Touret (1992) and Servain (1991), who identified a decadal timescale for an SST tropical “dipole index.” Melha and Delworth (1995) mention that SST variability south and north of the ITCZ occurs at timescales between 8 and 11 yr. Recently, Chang et al. (1997), using a hybrid coupled general circulation model, show that a dipole structure with a decadal timescale can be attained through unstable thermodynamics between wind-induced heat fluxes and SST anomalies. Northern and southern tropical components of the SST anomaly structure might be associated with the same mechanisms, but a true dipole structure is retained only for a relatively short time period (for at least 2 yr) in the quasi-decadal evolution. This is consistent with our results. When SVD and cross-spectral analyses are performed, with the NAO and subtropical SST normalized time series, significant coherence is found north and south of the equator. Nevertheless, the cross-spectral analysis between SST in the two regions identified in Fig. 5d reveals very little coherence (Rajagopolan et al. 1998). This leads us to believe that the SST in the two subtropical regions are independently coherent with NAO (Kushnir et al. 1998).

The trade winds are out of phase on this timescale since the subtropical anticyclones are also out of phase. The meridional SST gradient across the ITCZ associated with the decadal pattern has a profound effect on the northeast Brazil and Sahelian rainfall (Hastenrath and Heller 1997; Machado et al. 1990; Sperber and Hamide 1993; Wainer and Scares 1997).

c. Comparison of quasi-biennial and quasi-decadal periods

As shown in Fig. 1b, the statistical significance of the quasi-biennial and quasi-decadal bands varies with time. This was first mentioned by Kuttboch (1970). In particular, we can note from this figure that, when the quasi-biennial period was significant during the 1920–55 period, the quasi-decadal period was much less prominent. The interannual period, especially the 3.5-yr signal also seems to be less significant during this period. Gu and Philander (1995) note that between 1915 and 1950 the intensity of the Southern Oscillation was relatively small and increased rapidly thereafter. Similar observations were found by Rajagopolan et al. (1997) in their analysis of Darwin SLP data. The relationship, as a function of time, between the quasi-biennial and quasi-decadal periods is still unclear. According to Hurrell and van Loon (1996), the NAO “standing index” has exhibited considerable variability at quasi-biennial and decadal timescales during the past 130 yr. This is not the case in Fig. 1b, where the biennial signal is not significant prior to 1920. They also show that the NAO decadal variability becomes more pronounced after the 1950s. Similarity and differences between their results and ours could be due to several factors: 1) our study emphasizes the evolution of joint (both SST and SLP) spatial patterns as opposed to amplitudes of individual standing indices such as the NAO index for the North Atlantic only; 2) our analysis emphasizes joint coherent frequency bands and not necessarily spectral power, in which the power is shared between two fields over the entire Atlantic domain; 3) our analysis is based on monthly data as opposed to the winter time values of the NAO index used by Hurrell and van Loon (1996). Indeed, a moving-window spectrum on monthly time series of the NAO index (not shown) reveals a prominent quasi-decadal band prior to ~1920 as in Fig. 1b. We can infer from Rogers (1984) and Hurrell (1995) that between ~1920 and ~1960 there was a downward trend in the NAO index. Also, during the 1920–60 interval both the Azores high and the Icelandic low moved southwestward (Glowienka 1985). During that period the SLP over the Greenland–Iceland regions gradually increased (Rogers 1984) and the winter storm tracks in the North Atlantic were found further south (Tinsley 1988). This year interval is roughly related to the North Atlantic “warm period” identified by Kushnir (1994). The physical link between those observations and the concomitant changes in frequency characteristics of the joint SST–SLP patterns is not clear at this time. In a joint SST–SLP spatio-temporal analysis for the Northern Hemisphere, MP96 found that the quasi-decadal signal appeared as a distinctly cold-season phenomenon while the quasi-biennial signal is significant during both independent warm and cold seasons and stronger during the cold season. The effect of seasonality, while studying tropical–extratropical interactions for the entire Atlantic Ocean, needs further research.

In this paper it is shown that there is a relationship between localized SLP variations and dominant cycles in the joint SST–SLP variability in the North Atlantic. Generally, during the period when the NAO index di-
minishes, the quasi-biennial cycle is enhanced, which indicates a possible quasi-decadal modulation on shorter timescale variability. It is also believed that while NAO variability is tightly linked with SST variability (e.g., Kushnir 1994), the biennial variability as described in this analysis is largely atmospheric (compare the amplitudes of SST and SLP anomalies in Fig. 2). This is beyond the scope of this paper.

5. Summary

Five significant frequency bands for the joint SST–SLP evolution are identified in the Atlantic basin. They range from the quasi-biennial to the quasi-decadal. Two quasi-biennial bands are centered around 2.2- and 2.7-yr periods; two interannual bands are centered around 3.5- and 4.4-yr periods; the fifth band at the quasi-decadal frequency is centered around 11.4-yr time period. The spatial patterns corresponding to the five periods display large SLP variability in the North Atlantic. With the quasi-decadal period, the SLP patterns and their time evolution are not only linked with the NAO, but also with an out-of-phase relationship between the subtropical anticyclones in both hemispheres. This indicates a dominant quasi-decadal variability in the Atlantic Hadley circulation.

The five significant frequency bands are all associated with tropical warming with different intensities and evolution along the equatorial wave guide. For the quasi-biennial bands the entire tropical Atlantic gets simultaneously warmer (cooler). For the other three bands there is an out-of-phase relationship north and south of the mean position of the ITCZ. For the quasi-decadal band, this relationship leads to a short-lived dipole structure due to independent SST time evolution north and south of the ITCZ. The 3.5-yr band displays eastward evolution along the equator and seems to be linked to the Pacific ENSO through the atmosphere (warm/cold Atlantic events lag the Pacific by 15–18 months). The large (cold) events associated with the 4.4-yr band are weaker, propagate westward along the equator, and seem to be dependent on local Atlantic conditions such as the locus of the ITCZ.

From a modeling study, Grötzner et al. (1996) suggested that the Atlantic decadal climate cycle is a coupled ocean–atmosphere phenomenon as it is in the Pacific (Latif and Barnett 1994; Tourre et al. 1999). The apparent difference between the two low-frequency signals in the Atlantic and the Pacific must then be attributed to the size difference of the two basins and the dominance of the NAO in the North Atlantic. The latter implies a potential for atmospheric feedback. It is interesting to note that while Wohlsheben and Weaver (1995) identified an interdecadal signal in the SST of the subpolar North Atlantic gyre, Houghton (1996) found a quasi-decadal fluctuation in the upper portion of the Labrador Current, where vertical mixing is weaker due to freshwater input from the Arctic (Reverdin et al. 1997).

The relationship between the dominant joint evolution of SST–SLP and their approximate frequencies requires further investigation (with additional datasets including subsurface temperature, salinity, and precipitation). For example, preliminary reconstruction of the joint SST–SLP patterns corresponding to the 50-yr peak in Fig. 1b (not shown) seems to be consistent with the results from Delworth et al. (1993) and Kushnir (1994), suggestive of variability in thermohaline circulation as a plausible driving mechanism at this timescale. Isolating the main physical mechanisms involved by comparing results from diagnostic analyses with modeling output (reproducibility) will have immediate predictive application (Pittawala and Hamed 1991). Nevertheless, complexity could arise since the different signals (their relative intensity, stability, and evolution) modulate each other, as evidenced in this paper, when the quasi-biennial and the quasi-decadal signals are compared (Fig. 1b). Finally, more insight can be gained on the mechanisms associated with the patterns presented in this study by exploring the role of seasonality.

Acknowledgments. The authors would like to express their appreciation to Mike Mann for the numerous fruitful discussions they had with him. These discussions contributed invaluable to this paper. We are grateful, as well, for the suggestions made by the two anonymous reviewers.

Y. M. Tourre and B. Rajagopalan were supported in this study by NOAA Grant UCS 10-1077541/NA47GP01B8. Y. Kushnir was supported by NOAA Grant NA56GP0161.

REFERENCES

Chung, P. L. Ji, and H. Li, 1997: A decadal climate variation in the

