Computational Mechanics of Solids and Structures

CVEN 7511-001

Fall 2001

Instructor: Kaspar Willam
Office: ECOT 456, Hours TR 11:00 - 12:30 a.m.
Tel.: (303) 492-7011, e-mail: willam@colorado.edu
Prerequisites: Mechanics of Materials, Finite Element Analysis

Course Work:

- Lectures: TR 11:00-12:30 pm, ECCR 137
- Assignments (20 %): Homework Problems.
- Midterm Examination (20 %): Take-Home Exam.
- Computer Term Project (20 %), Presentation (10 %):
- Final Examination (30 %): Saturday, Dec. 15, 7:30 - 10:00 pm

Reference Texts:

Software Platforms:

- MATLAB, MATHEMATICA, Structures Programs
- ABAQUS (HKS), DYNA3D (LSTC)
- FEAP (R.L. Taylor UC-Berkeley)
- MFEM-FETI (CU-Boulder)
Course Outline

1. Preliminaries
 - Notation
 - Continuum Mechanics
 - The Finite Element Displacement Method
 - Linear vs. Nonlinear Finite Element Analysis

2. Total and Updated Lagrange Formulations in 1-D
 - Strong Form of Momentum Balance
 - Weak Form of Momentum Balance
 - 1-D Finite Element Discretization of Motion: TLF and ULF
 - Linearization of Internal Forces
 - Tangential Stiffness: Material and Geometric Properties

2. Total and Updated Lagrange Formulations in 2-D
 - Strong Form of Momentum Balance
 - Weak Form of Momentum Balance
 - 2-D Finite Element Discretization of Motion: TLF and ULF
 - Linearization of Internal Forces
 - Tangential Stiffness: Material and Geometric Properties

3. Nonlinear Material Formulations
 - Nonlinear Elasticity and Damage
 - Flow Theory of Plasticity
 - Computational Plasticity