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Abstract Hydroclimate time series often exhibit very low year-to-year autocorrelation while showing
prolonged wet and dry epochs reminiscent of regime-shifting behavior. Traditional stochastic time series
models cannot capture the regime-shifting features thereby misrepresenting the risk of prolonged wet and
dry periods, consequently impacting management and planning efforts. Upper Colorado River Basin (UCRB)
annual flow series highlights this clearly. To address this, a simulation framework is developed using a hid-
den Markov (HM) model in combination with large-scale climate indices that drive multidecadal variability.
We demonstrate this on the UCRB flows and show that the simulations are able to capture the regime fea-
tures by reproducing the multidecadal spectral features present in the data where a basic HM model with-
out climate information cannot.

1. Introduction and Background

We motivate, for clarity, the introduction and background of this research through the Upper Colorado River
Basin (UCRB) streamflow variability. The annual Lees Ferry naturalized flow series, at the outlet of UCRB
(Figure 1), exhibits a distinct regime-like behavior with sustained departures from the mean annual flow—
1906–1930 represents a high flow period followed by nearly 50 years of lower than average flow with a sud-
den shift to higher flows in the mid-1980s and finally the recent prolonged drought—though still maintains
a weak autocorrelation structure (lag 1 autocorrelation of 0.26, which is barely significant). A Hurst coefficient
of 0.73 (using the regression of the spectral density function [Taqqu et al., 1995]) or 0.59 (using Robinson’s
method [Robinson, 1994]) also does not indicate a strong long-term persistence in terms of the Hurst effect
[Hurst, 1951]. While we may never be certain if we are observing a stationary time series with a weak Hurst
effect or a truly nonstationary series [Koutsoyiannis and Montanari, 2007], methods based on short-term per-
sistence are clearly not adequate to explain the observations. Traditional time series models [Salas et al.,
1980] are based on short-term memory and stationarity, thus, a weak autocorrelation leads to weak persist-
ence and lower probability of long wet and dry spells. These long departures from the mean are important
for multiyear reservoir planning in the UCRB since they stress the system far more than single wet or dry
years. This behavior is similar to that suggested by Akintu!g and Rasmussen [2005] where persistence structure
in the data (in terms of climate regimes) is not fully described by the autocorrelation function.

Links between large-scale climate fluctuations and UCRB hydrology are increasingly apparent [Nowak et al.,
2012; Timlsena et al., 2009; McCabe et al., 2007; Hunter et al., 2006; Grantz et al., 2005; Hidalgo, 2003; Piechota
and Dracup, 1996; Nash and Gleick, 1991]. Previous studies provide evidence of the varying influence of
three oceanic climate phenomena, the El Ni~no Southern Oscillation (ENSO), the Pacific Decadal Oscillation
(PDO), and the Atlantic Multidecadal Oscillation (AMO) on UCRB streamflow and precipitation. El Ni~no, PDO
warm phase, and AMO cold phase are associated with increases in streamflow in the UCRB and La Ni~na,
PDO cold phase, and AMO warm phase are associated with decreased streamflow [Timlsena et al., 2009]. In
addition, coupling effects of the three phenomena are known to be important for streamflow generation.
For example, a corresponding El Ni~no and PDO warm phase is associated with a 10–30% increase in UCRB
seasonal streamflow volume as opposed to a 5–15% increase from either phenomenon alone [Timlsena
et al., 2009]. Time-varying influence of these climate phenomena are thought to create the type of regime-
switching behavior observed in the data.
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Capturing the regime-switching
behavior requires specialized meth-
ods capable of capturing the nonsta-
tionary spectrum. Fractional Gaussian
models [Koutsoyiannis, 2002] that can
account for Hurst effect, which are
stationary models, can capture non-
stationarity. However, if the Hurst
effect is weak, such as the case here,
these models might not be well

suited. Traditional time series models based on autoregressive-moving average (ARMA) framework are not
designed to capture nonstationary features in the spectrum and typically (but not necessarily) assume
errors are normally distributed. The ARMA models reproduce a specific spectral characteristics that are
smoothed and stationary [Salas et al., 1980]. Nonparametric methods based on block bootstrap [Ouarda
et al., 1997], K-nearest neighbor bootstrap [Lall and Sharma, 1996; Prairie et al., 2008] are all attempts to alle-
viate the normality assumption, and they perform very well at capturing non-normal features such as bimo-
dality as can be seen in the above references. They too cannot capture nonstationary spectral features
because time domain models—traditional or nonparametric—map on to stationary spectra. Spectral-based
methods decompose the time series into orthogonal frequency bands using wavelets and simulate each
with an ARMA model and add them, known as WARM—this captures the spectral features very well [Kwon
et al., 2007]. Improvements to WARM capture nonstationary spectrum have been proposed [Nowak et al.,
2011]. While the spectral features are captured, the ARMA framework restricts the ability to simulate effec-
tively the distributional properties.

Some time series models can explicitly capture regime-switching behavior without decomposition. The shift-
ing level (SL) proposed by Boes and Salas [1978] can explicitly capture shifts in the mean of a series. In an SL
model, the series is modeled as a sum of two independent stochastic processes, one for the mean component
and one for the noise component [Fortin et al., 2004]. Salas and Boes [1980] describe the case of the Nile River
Basin where the shifting means can produce spurious autocorrelation. The Lees Ferry data exhibits similar
behavior, the serial correlation from 1906 to 1981 is 0.11 and from 1982 to 2010 it is 0.48 while for the whole
period of record it is 0.26. This is indicative of a regime-switching behavior in terms of autocorrelation but the
behavior is also apparent in the mean (Figure 1). The original SL model did not estimate the nonstationary
mean and was therefore not useful for forecasting. A reformulated SL model was described by Fortin et al.
[2004] and shown to be a special case of a class of models known as hidden Markov models.

Hidden Markov (HM) models (also known as Markov switching models or dependent mixture models) have
wide applicability in hydrology for both simulation and forecasting. In HM models, a system switches
between a fixed number of unobserved or ‘‘hidden’’ states via a Markov chain and corresponding transition
probabilities. Each state corresponds to a probability distribution, called a component distribution, from
which observed time series values are drawn. The original hydrologic applications of HM models were to
rainfall data [Jackson, 1975; Zucchini and Guttorp, 1991; Thyer and Kuczera, 2000; Mehrotra and Sharma,
2005; Greene et al., 2008; Kwon et al., 2008; Khalil et al., 2010; Yoo et al., 2010; Greene et al., 2011]. In applica-
tions to streamflow, HM models [Zucchini and Guttorp, 1991; Akintu!g and Rasmussen, 2005; Gelati et al.,
2010; Evin et al., 2011] are attractive because of their ability to simulate long persistence and regime-
switching behavior in hydrologic time series. Regime changes, or switches between hidden states, espe-
cially on the annual scale have been attributed to regime shifts driven by large-scale climate features.

Akintu!g and Rasmussen [2005] discuss the correspondence of HM models with AR models. Though different
in design, they suggest that an HM(m) model has a similar autocorrelation structure to an order ARðm11Þ.
This result is indeed important for data sets that exhibit significant autocorrelation at high lags but leaves
open the question of applicability to data with very weak autocorrelation such as Lees Ferry. Akintu!g and
Rasmussen [2005] use a homogeneous stationary hidden Markov model to simulate annual runoff for the
Niagara River. The Niagara River exhibits strong autocorrelation and so is ideal to be simulated with HM
models or higher-order ARMA models. Lees Ferry flow time series exhibits strong nonstationarity in the
spectrum with decadal variability in recent years (Figure 7a)—the standard HM such as those used above
would not capture this spectral feature, necessary for robust simulation of wet/dry epochs. Previous studies

Figure 1. Lees Ferry annual naturalized flow time series. The black line represents a
5 year running mean.
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typically suggest that the HM states are driven by large-scale climate processes such as ENSO [Gelati
et al., 2010] or PDO [Akintu!g and Rasmussen, 2005] but few studies actually include those indices directly
into simulations or forecasts. Gelati et al. [2010] use a specialized HM model called the Markov modu-
lated autoregressive model with exogenous input (MARX) with transition probabilities conditioned on
sea surface temperatures. They make single step quarterly forecasts and longer-term simulations of run-
off. Multifractal methods (e.g., Fractional Brownian Motion) [Chi et al., 1973; Stedinger and Taylor, 1982;
Hosking, 1984; Mesa and Poveda, 1993; Lohre et al., 2003] are able to simulate long-memory processes (as
described by the Hurst coefficient), which can reproduce nonstationary behaviors and may include exog-
enous inputs. However, including exogenous variables in these models is not straightforward and they
are not guaranteed to capture nonstationary spectral features. Henley et al. [2011] developed a climate-
informed multitime scale stochastic (CIMSS) framework that directly incorporates observed and paleo cli-
mate indices. The CMISS framework is able to capture observed wet/dry state run lengths better than
the HM models they used but they do not discuss the ability of the model to capture local spectral
features.

It is therefore clear, there is a need to develop a framework for time series simulation incorporating the
regime-switching behavior of a hidden Markov model but that also captures observed nonstationary spec-
tral features by incorporating large-scale climate information; this motivates the current study.

The paper is structured as follows: a brief overview of the model formulation and parameter estimation is
given. The application of HM models to Lees’s Ferry naturalized flow data is described. Results of the simula-
tion and forecasting procedures are presented followed by the conclusions of this study. In Appendix A, we
present the moments of a gamma HM model since they are not common in the literature.

2. Methodology

2.1. Model Formulation
As mentioned above, hidden Markov (HM) models are also known as Markov switching models, Markov
mixture models, or dependent mixture models. An order m HM model transitions or switches between m
‘‘hidden’’ states according to a discrete Markov chain with transition probability matrix C. These states are
typically described as climate regimes [Thyer and Kuczera, 2000; Akintu!g and Rasmussen, 2005; Gelati et al.,
2010]. Each state prescribes a probability distribution known as a component distribution. The parameters
of the component distributions are dependent on the state of the Markov process. Note that although
the terms ‘‘wet’’ and ‘‘dry’’ are commonly used to describe states of an HM model, low flows can be gener-
ated in the ‘‘wet’’ state and vice versa.

The notation for HM models in the literature is somewhat nonstandard; we will adopt the notation of Zuc-
chini [2009]. For an observed sequence Xt, t51; 2; :::; T , the general form of an HM model is

PrðStjSðt21ÞÞ5PrðStjSt21Þ; t52; 3; :::; T (1)

PrðXtjXðt21Þ; SðtÞÞ5PrðXtjStÞ; t 2 N (2)

where St is the unobserved or ‘‘hidden’’ sequence that follows a simple first-order Markov process. St

denotes the sequence S1; S2; :::; ST . The transition probabilities, i.e., the conditional probabilities of transition
from one hidden state to another, are defined as

cjk5PrðSi115kjSi5jÞ (3)

or in matrix form

C5

c11 $ $ $ c1m

! . .
.

!

cm1 $ $ $ cmm

2

6664

3

7775: (4)

In this formulation, the observed sequence Xt is dependent only on the current hidden state St. Note that in
general Xt is not a Markov process [Zucchini, 2009].

The unobserved sequence St determines the state-dependent probability distribution

Water Resources Research 10.1002/2014WR015567

BRACKEN ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 7838



piðxÞ5PrðXt5xjSt5iÞ: (5)

For our purposes, pi will represent a probability density function but it may similarly represent a probability
mass function in the discrete case. Previous HM models of streamflow have used normal components distri-
butions [Jackson, 1975; Zucchini and Guttorp, 1991; Akintu!g and Rasmussen, 2005; Gelati et al., 2010] but
recent studies [Wiper et al., 2001; Al-Saleh and Agarwal, 2007; Evin et al., 2011] have explored the use of
gamma component distributions. The gamma distribution is commonly used in the hydrologic modeling
because of its lower bound of zero [Salas et al., 1980]. In this application, we use gamma component distri-
butions, which are intuitive for strictly positive hydrologic applications such as streamflow and rainfall. In
the case of a gamma component distribution

piðxÞ5gðx; ki ; hiÞ5
hki

i

CðkiÞ
xki 21e2hi x for x % 0 (6)

where ki is the state-dependent shape parameter, hi is the state-dependent rate parameter, and C is the
gamma function. The result is analogous for normal component distributions.

We use a nonstationary version of the model described by Akintu!g and Rasmussen [2005]. Our model does
not assume that the initial distribution is the stationary distribution and therefore allows the expected state
to change in time. The stationary distribution, d, can be computed conveniently from the identity [Zucchini,
2009]

dðIm2C1UÞ51m (7)

where Im is the m 3 m identity matrix, U is an m 3 m matrix of ones, and 1m is an m dimension row vector
of ones.

2.2. Parameter Estimation and Model-Order Selection
Many methods exist to estimate the parameters of HM models. Commonly used techniques include direct
maximization of the likelihood function [Zucchini, 2009; Akintu!g and Rasmussen, 2005] and Bayesian estima-
tion procedures [Thyer and Kuczera, 2000, 2003]. Another common method is known as the Expectation
Maximization (EM) algorithm [Dempster et al., 1977] for maximum likelihood estimation when some data
are missing (in this case the hidden states). The EM algorithm provides a good compromise between the
efficiency of direct maximization and the robustness of Bayesian techniques. The implementation of the EM
algorithm in this context is known as the Baum-Welch algorithm [Baum et al., 1970]. The EM algorithm starts
with an expectation step (E-step) to provide an estimate of the data likelihood given parameter estimates.
The E-step is followed by the maximization step (M-step) where the data likelihood is maximized with
respect to the parameters. The E-step and M-step are repeated until convergence of parameter values is
achieved [Zucchini, 2009]. For gamma component distributions, the portion of the data likelihood that
depends on the gamma parameters, no closed form equation exists so numerical maximization must
be employed.

The EM algorithm requires initial parameter guesses, the transition probabilities (C), the parameters of the
component distributions (K), and the initial distribution (d). We use the following criteria for initial parame-
ter guesses:

1. C05U=m, where U is an m 3 m matrix of ones.

2. The initial parameters are estimated by fitting a single component distribution to the entire data and
then the same estimates are used for all the component distributions.

3. The initial distribution is first estimated as d05ð1;0m21Þ where 0m21 is an m – 1 dimension row vector of
zeros. If the choice for d does not yield m distinct component distributions after employing the EM algo-
rithm, then try 1m=m where 1m is an m dimension row vector of ones.

Both the Bayesian Information Criteria (BIC) [Schwarz, 1978] and the Akaike Information Criteria (AIC)
[Akaike, 1974] can be used to determine the optimal model order for the HM model. Lower values of both
AIC and BIC are favorable, where BIC more heavily penalizes higher numbers of parameters. In model selec-
tion, the model order is selected when increasing the order further would cause an increase in AIC or BIC.
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2.3. Global Decoding
Global decoding of the hidden states was done using the Viterbi algorithm [Forney, 1973]. The Viterbi algo-
rithm is a recursive procedure which maximizes the conditional probability of the sequence of states given
the observed data values

PrðSðTÞ5sðTÞjXðTÞ5xðTÞÞ: (8)

The resulting sequence s1; s2; :::; sT is the most likely sequence of states, known as the global decoding.
Complete details of the procedure are given in Zucchini [2009].

2.4. State Model—Incorporating Climate Information
In a traditional HM model, states are determined by the transition probability matrix of the underlying Mar-
kov process. Simulations from a traditional HM model are not conditioned on the climate and are therefore
not expected to capture observed decadal variability. Assuming that decadal variability in streamflow is pri-
marily the result of large-scale climate fluctuations, we propose an alternate method to simulate the state
of the HM model that is directly informed by the climate system.

The globally decoded states are a time series, s1; s2; :::; sT , taking values 1; :::;m. Using the globally decoded state
series, we train a multinomial logistic regression model to obtain estimates of the probability the system was in a
particular state. Multinomial logistic regression is a generalization of binary logistic regression where the response
variable can take on K possible outcomes instead of two [Hastie et al., 2002]. Predictor variables can be continuous
or discrete. If the order of the HM model is 2, the state model simplifies to binary logistic regression. The reader is
referred to Hastie et al. [2002] for the multinomial extension in the case of 3 or more states. The form of the state
model follows from an appropriate generalized linear model [McCullagh and Nelder, 1989]

gt5ln
pt

12pt
5b01b $ xt (9)

where gt is known as the logit link function, pt is the probability that the system was in state 1 in year t, b0 is
the intercept term, b is a vector of the logistic regression parameters, and xt is a vector of climate indices at
year t. Discrete states are related to climate indices by the logistic function

pt 5
exp b01b $ xtð Þ

11exp b01b $ xtð Þ (10)

The logistic function can only take values between 0 and 1, interpreted as probabilities. The parameters can
be estimated with iteratively reweighted least squares (IRLS) using Newton-Raphson/Fisher-scoring itera-
tions [Hastie et al., 2002].

2.5. Simulation Procedure
Given an HM model and a state model, together referred to as the climate-informed hidden Markov model
(HMC), we can generate simulations using the state model predictions instead of the traditional simulation
approach of using the HM transition probabilities. By doing so, we capture the decadal variability present in
the climate indices. This is akin to using nonhomogeneous transition probabilities [Robertson et al., 2004].

1. Draw a uniform random number r5Uð0; 1Þ.

2. For each year t:

2.1. Determine the state estimate, ŝt , by finding the sample rank of the first element of the vector ½r;C1;

C2; :::; Cm' where Cj5
Pj

i50 pi;t , the sequence of partial sums of the state probabilities at time t.

2.2. For each year t, draw a random number from the state-dependent component distribution determined by ŝt .

3. Repeat steps 1–3 to generate the desired number of simulations.

3. Results

Ensembles of Lees Ferry naturalized streamflow each 105 years long, same as the historical data, are simulated
using the two HM models—the basic HM model with gamma component distributions, referred to as HMG
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and a climate-informed version of the same referred to as
HMC, as described above. Both methods sample from
identical gamma component distributions but differ in
their simulation of the hidden state.

First, the best HMG model is fitted—for this the AIC and
BIC were used and both resulted in a second-order
model, i.e., two states each with a component gamma
distribution. The model parameters—the state transition
probabilities from 1 year to next and the parameters of
the two gamma distributions—are shown in Table 1. The

two gamma distributions along with the his-
togram and the combined distribution of
the data are shown in Figure 2. The two dis-
tributions of the two hidden states, based
on the location of their peaks characterize
two ‘‘regimes’’—normal and wet.

From the global decoding, the most likely
sequence of hidden states that evolved the
historical flow time series is shown in Figure
3b. The persistence of the system in terms of
prolonged stretches of these states—i.e.,
regimes—is readily apparent. This is further
highlighted in Figure 3a which shows the
historic flow time series overlaid with the
mean of the period over which the model
was in a particular state (Figure 3a). We can
also see that the states correspond to wet

and dry epochs in the data. The period in the early 1900s corresponds the time in which the Colorado River
Compact [Colorado River Commission and Coauthors, 1923] was signed which is known to be a period of
above average flow and the same during the 1980s. The hidden states and the corresponding gamma dis-

tribution reveal the regime-like behavior of
the flow series.

To fit the HMC model, a state generation
model is developed using climate indices.
For predictors of state, we chose time series
of climate indices that are known to influ-
ence streamflow in the UCRB as potential
predictors: AMO, PDO, and ENSO (specifi-
cally the Ni~no3 index) [Nowak et al., 2012;
Timlsena et al., 2009; McCabe et al., 2007;
Hunter et al., 2006; Grantz et al., 2005;
Hidalgo, 2003; Piechota and Dracup, 1996;
Nash and Gleick, 1991]. To capture the tem-
poral dependence, we also included previ-
ous year’s state, St21, as a predictor. By
including climate indices along with St21,
we expected to capture both decadal vari-
ability and persistence of state. Using the
globally decoding states in Figure 3b, the
dependent variable is this two category time
series. Given that the optimal HM model
order is 2, we fit a two category multinomial
logistic regression model, which in this case

Table 1. HM Model Parameters

Parameter Model

k 12:11480

22:02217

" #

h 0:889508

1:221267

" #

C 0:98 0:02

0:08 0:92

" #

d ½0; 1'

Figure 2. Stationary distributions of gamma component HM model.

Figure 3. (a) Global decoding of the HM model using the Viterbi algorithm.
(b) Plotted below is the Lees Ferry annual time series. The horizontal lines
indicate the mean of the periods above where the model was in a particular
state.
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is simply a binary logistic regression model described in the previous sections. The best model based on
AIC was obtained as:

gt5b01b1AMOt1b2PDOt1b3St21: (11)

We present parameter estimates and results from a basic HM model using gamma component distribu-
tions (HMG), as well as the same HM model (HMC), using a climate-based state model, referred to as
the HMC. As a control case, we also include results where we impose a perfect knowledge of the HM
states.

Following Guimar~aes and Santos [2011], we generated 1200 ensembles from both models, HMG and HMC,
each of length 105 (the same length of the data). Figure 4 shows the boxplots of basic distributional statis-
tics—mean, standard deviation, skewness, lag-1 autocorrelation, minimum, and maximum—along with
observed value as horizontal line. The mean and standard deviations are captured precisely while values of
maximum and minimum are simulated outside of the range of available data, a feature important for planning
studies which can identify limitations of existing systems and management strategies under conditions not
seen within a historic record. Skewness is oversimulated—though the magnitude of the oversimulation is
small it is likely an artifact of the underlying gamma distributions—a trade off for including a lower bound of

zero. Figure 5 shows the boxplot of the probability
density function (PDF) of simulations from HMC
model along with the observed. This too is cap-
tured well—nearly identical simulation of the PDF
was seen from the basic HMG model (figure not
shown). The ability of HM models to simulate pro-
longed spells (wet and dry) is of interest here as it
is one indicator of regime-switching behavior. A
view of the run lengths is provided in Figure 6. The
frequency of runs of various lengths from the simu-
lations of HMC model is shown as boxplots along
with the observed frequency. As can be seen, the
simulations capture the distribution of prolonged
runs very well. The ability to capture the observed
run length distribution is important for water
resources system reliability. Simulations from HMG

Figure 4. Basic simulation statistics of HMC framework and basic HMG. Boxplots represent the spread of the simulations and the horizontal line represents the observed value.

Figure 5. Observed (solid line) and boxplots of simulated PDF with
the HMC model.
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also showed similar performance (figure not
shown).

The spectral signature of a time series is an
important attribute to consider in simulation
[Kwon et al., 2007]—as it captures the low-
frequency variability and nonstationarity. The
wavelet spectrum of Lees Ferry flow series (Figure
7a) exhibits strong variability in the decadal
period band in recent years. This nonstationarity
is important in characterizing the wet period of
1980s and the ongoing prolonged drought. A
nonclimate-informed hidden Markov model such
as HMG does not capture the nonstationary
behavior of the evolution of the states which
imparts spectral nonstationarity. This can be seen
in Figure 7b which shows the median wavelet

spectrum from the simulations and the power in the decadal band is smeared over the entire time
period. We imposed the state sequence from global decoding in HMG—in that, the state sequence from
Figure 3a is taken and flow magnitudes are generated from the corresponding gamma distribution. The
median wavelet spectrum from these simulations is shown in Figure 7c, which is closer to the spectrum
of the historic flow series (Figure 7a). This indicates that the nonstationarity in the spectrum is a result of
the sequence of the hidden states, which too is nonstationary and not captured by a stationary Markov
transition. Figure 7d shows the median spectrum from HMC simulations, in which the logistic regression
model is used to estimate the state probabilities for each year based on the climate indices and,

Figure 6. Observed (black points) and simulated (boxplots) run
lengths from the HMC model.

Figure 7. (a) Lees Ferry observed wavelet spectrum, (b) median wavelet spectrum from HMG simulations, (c) median wavelet spectrum
when the globally decoded HM states are imposed on the simulations, and (d) median wavelet spectrum from the HMC simulations, incor-
porating climate information.
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consequently the state sequences are generated. The median spectrum from these simulations captures
the spectral features of the historic flow (Figure 7a), especially in the decadal period band, very well. The
HMC framework, by incorporating climate information, is able to capture the observed spectral
nonstationary.

4. Conclusions

We developed a flexible framework for stochastic simulation of flow time series that exhibited regime-like
behavior. The method used two components—a gamma component distribution for each hidden state (or
regime) from the hidden Markov model and a multinomial logistic regression that incorporates large-scale
climate information—to model the nonstationarity in state transitions. The framework was applied to the
naturalized flow from the outlet of the Upper Colorado River Basin—a series exhibiting low autocorrelation,
regime-switching behavior, and nonstationary decadal variability, attributes not possible to capture using
traditional time series methods. The HMC was shown to capture all of the distributional statistics of the data
as well as the observed nonstationary decadal variability in the spectrum.

The HMC framework is complementary to spectral-based simulation methods [Nowak et al., 2011; Kwon
et al., 2007] in that it enables the incorporation of large-scale climate information [Henley et al., 2011]. The
nonstationarity in the state transitions enabled by HMC is akin to simulating from a nonstationary Markov
chain [e.g., Prairie et al., 2008]. This framework could be readily extended to multiple sites on a river network
using either disaggregation or a multivariate HM model [Hughes and Guttorp, 1994; Hughes et al., 1999; Meh-
rotra and Sharma, 2005; Mares et al., 2014]. Similarly, multivariate HM models can be used to model the cli-
mate indices and flow jointly. The modeling approach is hierarchical in nature which provides opportunities
for Bayesian modeling [Berliner et al., 2000; Thyer et al., 2009; Cooley and Sain, 2010; Schliep et al., 2010;
Cooley et al., 2012]. Extensions of this approach to additional basins and seasonal ensemble forecasting will
be helpful for water resources management.

Appendix A: Moments of the Gamma HM

We provide moments and the autocorrelation function for a hidden Markov model of order m with gamma
component distributions since it is not widely used. Corresponding formulas for normal HM models are
given in Akintu!g and Rasmussen [2005] and Fr€uhwirth-Schnatter [2006]. Let d denote the stationary distribu-
tion of the HM model then:

EðXtÞ5
Xm

i51

diki

bi
(A1)

VarðXtÞ5
Xm

i51

di a2
i 1

ki

b2
i

" #

(A2)

where

ai5
ki

bi
2EðXtÞ (A3)

and

SkewðXtÞ5VarðXtÞ23=2
Xm

i51

diai a2
i 13
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b2
i

 !2" #
: (A4)

The autocorrelation function is

qðkÞ5

Xm

i51

Xm

j51

di ki kjcijðkÞ
bibj

2 EðXtÞ½ '2

VarðXtÞ
(A5)

where cijðkÞ is the i, j entry of Ck .
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