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What is hydrologic frequency analysis?
Process of estimating recurrence probabilities of rare hydrologic events (floods,
heavy rainfall, etc.).
General procedure:

1. Generate extreme data. For example
take the maximum daily flow value
from each year from a daily flow
dataset.

2. Fit a probability distribution. For
example generalized extreme value.

3. Compute return levels (quantiles). A
100-year return level will be the
(1-1/100)th quantile. 0.0
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Lay of the land

I Bayesian hierarchical modeling of precipitation and streamflow extremes
I Active area of research in the last 10-15 years
I Alternative to regional frequency analysis
I End goal is to estimate distributions of return levels

I Hydrologic frequency models come in many flavors
I Single site and spatial
I Stationary and nonstationary

I Typically these analyses are conducted independently

I How should a multivariate frequency analysis be conducted?
I What multivariate frequency models are appropriate?
I What is gained by a multivariate analysis?
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Statistics of Extremes
Given daily data, if we select the maximum value in each year, those data follow a
generalized extreme value (GEV) distribution:

GEV(x; µ, σ, ξ) =
1
σ

b(−1/ξ)−1 exp
{
−b−1/ξ

}
b = 1 + ξ

(
x−µ

σ

)
, µ: Location, σ: Scale, ξ: Shape.

Return Level (quantile function):

zr = µ +
σ

ξ
[(− log(1− 1/r))−ξ − 1]

Where r is the return period in years (100
years for example).
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Typical model framework
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General Multivariate Model Structure
Let y1, . . . , yn be n block maxima variables we wish to conduct frequency analysis on.

(y1(t), . . . , yn(t)) ∼ Cg(Σ; {µ(t), σ(t), ξ(t)}) (1)
yi(t) ∼ GEV(µi(t), σi(t), ξi(t)), i = 1 . . . n (2)

µi(t) = g(xi(t)T, µ(t), σ(t), ξ(t)), i = 1 . . . n (3)

σi(t) = g(xi(t)T, µ(t), σ(t), ξ(t)), i = 1 . . . n (4)

ξi(t) = g(xi(t)T, µ(t), σ(t), ξ(t)), i = 1 . . . n (5)

where Cg is a gaussian elliptical copula joint distribution and g(·) is a (possibly
nonlinear) function of covariates and parameters of other variables.

µ(t) = [µi(t)]ni=1, σ(t) = [σi(t)]ni=1, ξ(t) = [ξi(t)]ni=1
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Copula Dependence
The copula dependence matrix, Σ is a symmetric positive definite matrix capturing the
strength of dependence between each pairwise variable. The i, jth element of Σ
measures the dependence between variables i and j and can take values between -1 and
1. By definition the dependence between a variable and itself is unity so the diagonal
elements of Σ are 1’s

Σ =


1 ν12 · · · ν1,n−1 ν1n

ν12 1 ν2n

ν13
. . .

...
... 1 νn−1,n

ν1n ν2n · · · νn−1,n 1

 (6)

Note that since Σ is symmetric, there are n(n− 1)/2 dependence parameters to fit
(values in the lower or upper triangle of Σ).
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Application 1 - Streamflow and precipitation

I 32 years of winter (DJF) 3-day flow maxima (Neuman et. al 2015):

z(t) ∼ GEV(µz(t), σz(t), ξz(t))

I 32 years of winter (DJF) 3-day precipitation maxima (GHCNd):

y(si, t) ∼ GEV(µy(t), σy(t), ξy(t)), i = 1, ..., n

I Covariates:

x(t) = (seasonal total precip, enso, pdo, amo)
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Exploratory Analysis - Are extremes linearly linked at the parameter level?

1. Fit nonstationary GEV models to flow gage and surrounding precip gages using
maximum likelihood

2. Correlate the nonstationary parameter estimates
3. High correlation implies GEV parameters are related linearly
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Exploratory Analysis - Are extremes linearly linked at the parameter level?
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Study area
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Model Structure

(y(s1, t), . . . , y(sn, t), z(t)) ∼ Cg(Σ, {µ(t), σ(t), ξ(t)})
Regional nonstationary precip model:

y(si, t) ∼ GEV(µy(t), σy(t), ξy)

µy(t) = xT(t)βµ

σy(t) = xT(t)βσ

ξy(t) = ξy

Nonstationary flow model:

z(t) ∼ GEV(µz(t), σz(t), ξz)

µz(t) = a + µy(t)b

σz(t) = c + σy(t)d

ξz(t) = ξz

a, b, c, d are latent regression coefficients.

From nonstationary GEV parameter estimates we can compute nonstationary return
levels.
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Copula dependence

The copula dependence matrix Σ is a positive definite symetric matrix with diagonal
elements equal to 1 and all other elements are between -1 and 1.

Σ =

[
D v
v 1

]
v = [vz1]

n
i=1

vz1 is the correlation between the flow gage and precip station i.

D = exp(||xi − xj||/a)

a is the precipitation range parameter.
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Model fit and priors

I Fit using a univariate slice sampler within Gibbs
I Uninformative uniform priors, except for ξ ∼ N(0, 0.3).
I 100,000 samples, 20,000 warmup iterations, 3 chains, thinned by 20, resulting in

12,000 posterior samples.
I R̂ < 1.1 for all parameters
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Results: 100 year return levels
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Results: Precipitation return levels (100 year)

Coupled Precip: Uncoupled precip:
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Results: Flow return levels (100 year)

Coupled flow: Uncoupled flow:
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Application 2 - Reservoir frequency analysis
Taylor Park Reservoir, Colorado, USA.

I 35 years of annual 1-day flow maxima:

z(t) ∼ GEV(µz(t), σz, ξz)

I 35 years of annual 1-day peak SWE (GHCNd):

y(t) ∼ GEV(µy(t), σy, ξy), i = 1, ..., n

I 35 years of annual 1-day peak reservoir elevation:

h(t) ∼ GEV(µh(t), σh, ξh), i = 1, ..., n

I Covariates:

x(t) = (linear trend, enso, pdo, amo)
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Application 2 - Reservoir frequency analysis
snow flow elev
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Application 2 - Model structure

(y(t), z(t), h(t)) ∼ Cg(Σ; {µy(t), σy, ξy, µz(t), σz, ξz, µh(t), σh, ξh}) (7)
y(t) ∼ GEV(µy(t), σy, ξy) (8)
z(t) ∼ GEV(µz(t), σz, ξz) (9)
h(t) ∼ GEV(µh(t), σh, ξh) (10)

µy(t) = µy0 + x(t)T βy (11)

µz(t) = µz0 + x(t)T βz (12)
µh(t) = a− exp(−bµz(t)) (13)

where x(t)T is a vector of climate covariates.

21 / 26



Intro Application 1 Application 2 Conclusions

Application 2 - Copula dependence

The copula dependence matrix is

Σ =

 1 νyz νyh
νyz 1 νzh
νyh νzh 1

 (14)

where νij represents the dependence (correlation) between variable i and j.
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Results - Nonstationary return levels
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Results - Joint distributions
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Results - Uncertainty
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Conclusions
Pros:

I Multivariate frequency analysis allows multiple variable to lend strength across
space and time

I May decrease uncertainty
I Multivariate simulation
I Nonstationary risk estimation
I Potential for seasonal forecasting and future projections of risk

Cons:
I May increase uncertainty
I Data availability
I Computation time
I Need to tailor the model structure to each analysis

Thanks!
26 / 26
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