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Abstract

A Bayesian hierarchical model for spatial extremes on a large domain is pro-
posed. In the data layer a Gaussian elliptical copula having generalized ex-
treme value (GEV) marginals is applied. Spatial dependence in the GEV pa-
rameters are captured with a latent spatial regression with spatially varying
coefficients. Using a composite likelihood approach and a method for incorpo-
rating stations with missing data, we are able to efficiently incorporate a large
precipitation dataset. The model is demonstrated by application to seasonal
precipitation extremes at approximately 2600 stations covering the western
United States, —125E — —100E longitude and 30N to 50N latitude. The hier-
archical model provides parameters on a 1/8th degree grid and consequently
maps of return levels and associated uncertainty for each season. The model
results indicate that return levels vary coherently both spatially and across sea-
sons, providing valuable information about the space-time variations of risk
of extreme precipitation in the western US, helpful for infrastructure planning.

1 Introduction

Engineering design of infrastructure such as flood protection, dams, etc. and management
of water supply and flood control require robust estimates of return levels and associated
errors of precipitation extremes. Spatial modeling of precipitation extremes not only can
capture spatial dependence between stations but also reduce the overall uncertainty in
at-site return level estimates by borrowing strength across spatial locations [Cooley et al.,
2007]. Hierarchical Bayesian modeling of extremes precipitation was first introduced by
[Cooley et al.,2007] and since has been widely discussed in the literature [Cooley and Sain,
2010; Aryal et al| 2010; Atyeo and Walshaw, 2012 Davison et al., 2012; \Ghosh and Mallick,
2011; |Reich and Shaby, 2012; |Sang and Gelfand, 2010, 2009; |\ Apputhurai and Stephenson, 2013;
Dyrrdal et al.,|2014]. Hierarchical modeling is an alternative to regional frequency analysis
providing gridded or pointwise estimates of return levels within a study region [Renard),
2011].

Bayesian hierarchical models for spatial extremes have typically been limited to small
geographic regions that include on the order 100 stations covering areas on the order of
xxx km?. Large geographic regions with many stations present a computational challenge
for hierarchical Bayesian models, especially when computing the likelihood of Gaussian



processes (GPs), which for n data points, requires inverting an n x n matrix, an O(n?)
operation. Several approaches exist for speeding up GP likelihood computations such
as low-rank approximations [Banerjee et al., |2008] in which the GP is approximated at a
small number of knots and composite likelihood methods [Caragea and Smith, 2007] where
the likelihood computation is broken into groups containing a small number of stations.
The use of a composite likelihood approach is explored here because we not only wish
to estimate covariance parameters but to also produce maps of return levels with small
credible intervals.

Some attempts have been made to model extremes in large regions and with large datasets
in a Bayesian hierarchical context. |Reich and Shaby| [2012] use a hierarchical max-stable
model with climate model output in the east coast to examine spatially varying GEV pa-
rameters, with a max-stable process for the data dependence level. [Ghosh and Mallick,
2011] model gridded precipitation data over the entire US, for annual maxima at a 5x5
degree resolution (43 grid cells) and copula for data dependence, incorporating spatial
dependence directly in a spatial model on the data, not parameters. [Cooley and Sain,
2010] and [Sang and Gelfand, 2009] model over 1000 grid cells of climate model output
using spatial autoregressive models which take advantage of data on a regular lattice to
simplify computations.

The research contributions of this study are as follows. A Bayesian hierarchical model
is proposed which is capable of incorporating thousands of observation locations by uti-
lizing a composite likelihood method. The GEV shape parameter is modeled spatially
in order to capture the detailed behavior of extremes in the western US. In addition the
model is capable of incorporating stations with missing data with little additional com-
putational overhead. The model is applied to observed precipitation extremes in each
season, providing estimated seasonal return levels for the western US.

In section 2 the general model structure is described. Section 3 describes details of the
application to seasonal extreme precipitation in the western US. Results are discussed in
Section 4 and Discussion and conclusions are given in Setcion 5.

2 Model structure

The joint distribution of the m data in each year is modeled as a realization from a Gaus-
sian elliptical copula with generalized extreme value (GEV) distribution marginals. The
copula is characterized by pairwise dependence matrix . Spatial dependence is further
captured through spatial processes on the location s(s), scale o(s) and &(s) parameters.
We assume the parameters can be described through a latent spatial regression where the
residual component w,(s) follows a mean 0, stationary, isotropic Gaussian process (GP)
with covariance function C, (s, s’) where 7 represents any GEV parameter (y, o, £). The



corresponding covariance matrix is Cy(6,) = [C,(s;, s;; 64)]]";_; where 6, represents the
covariance parameters. The first layer of the hierarchical model structure is:

(Y(s1,8),-- -, Y(sm, 1)) ~ Geopm[35{u(s), o(s),£(s)}] M
Y(s,t) ~ GEVlu(s),o(s),£(s)] 2)

where Y (s, t) is the response at site s and time ¢ and Gcopy, stands for “m-dimensional
Gaussian elliptical copula” with dependence matrix X. The spatial data layer processes in
each year are assumed independent and identically distributed. Alternatives to using a
copula to construct the joint distribution are an assumption of conditional independence
[Cooley et al.,|2007] and max-stability [|Smith, 1990;|Schlather|, 2002; Cooley et al., 2006} |Shang
et al.,2011; Padoan et al., 2010]. Marginally, observations are assumed to have a generalized
extreme value (GEV) distribution.

The second layer of the hierarchy, also known as the process layer, involves spatial models
for the GEV parameters

p(s) = Byuo + %, (3)B,(s) + wy(s) 3)
7(8) = Boo + X2 (8)By(8) + wo(s) (4)
§(s) = Beo + x¢ (8)Be(s) + we(s) ®)

Where f3, ¢ are spatially independent intercept terms, x? (s;) is a vector of p spatially vary-
ing predictors and 3, (s) is a vector of p spatially varying regression coefficients. Covari-
ates will be discussed in Section 3.2

The shape parameter ¢ is notoriously difficult to estimate, its value determining the sup-
port of the GEV distribution. Positive values of ¢ indicate a lower bound to the distri-
bution, negative values indicate an upper bound and zero indicates no bounds. In many
studies, £ is modeled as a single value per study area or per region within the study
area [Cooley et al., 2007; |Renard), [2011} |Atyeo and Walshaw, 2012; Apputhurai and Stephenson,
2013]. Asin [Cooley and Sain, 2010], we cannot assume that this parameter is constant over
the large study region and so it is modeled spatially along with the other GEV parame-
ters.

For large regions we cannot assume that a constant spatial regression holds for the entire
domain and thus must introduce spatial variation in the regression coefficients. The third
layer of the hierarchy involves a spatial model for these regression coefficients

B(s) = Z il (s) (6)



k
By(s) =D ni(s) @)
=1

k
Be(s) = i (s) ®)
=1

where the ¢;’s are weights for £ basis functions, the 7;’s, which are distributed throughout
the domain. More details are given in section xxx.

2.1 Elliptical copula for data dependence

Elliptical copulas are a flexible tool for modeling multivariate data [Renard, 2011; Sang and
Gelfand, |2010; |Ghosh and Mallick, 2011; Renard and Lang, [2007]]. This class of copulas can
represent spatial data with any marginal distribution, a particularly attractive feature for
extremal data. The Gaussian copula constructs the joint pdf of a random vector (Y7, ...Y,)
as

FGaussian(ylu cee 7ym) - (I)Z(ula um) (9)

where @5 (uy, ....uy, ) is the joint cdf of an m-dimensional multivariate normal distribution
with covariance matrix 3, u; = ¢~ (Fj[y;]), ¢ is the cdf of the standard normal distribution
and F; is the marginal GEV cdf at site i. The corresponding joint pdf is

[1 /v
fGaussian(yla . 7ym) = 1:37\1/2(“17 um) (10)

H Ylui]
i=1

where f; is the marginal GEV pdf at site 7, ¢ is the standard normal pdf and ®y; is the joint
pdf of an m-dimensional multivariate normal distribution.

The dependence between sites is assumed to be a function of distance [Renard, 2011]. The
dependence matrix is constructed with a simple exponential model

26, 7) = exp(—|lsi — s;l[/ao) (11)

where a is the copula range parameter. Note that the values in this dependence matrix
are not covariances, so by analogy with the variogram, the dependence model is termed
the dependogram [Renard, 2011].



TODO: Discuss asymptotic independence assumption

2.2 Spatial regression model

For large regions, spatial regression relationships may not hold constant for the entire
domain. In this case it is necessary to allow for spatial variation in the spatial regressions
for each GEV parameter. Each regression coefficient is represented as a weighted sum of
radial basis functions basis functions (Equations [p[{§). The form of these basis functions
are

ni(s) = exp (~||s — si|*/af) (12)

where a? is a range parameter determining the spatial extent of the basis function. These
basis functions, also known as Gaussian kernels, are placed at points throughout the do-
main, known as knots, allowing the regression coefficients to vary smoothly in space.

The knots are placed according to a space-filling design [Johnson et al., 1990; \Nychka and
Saltzman), (1998]. For each GEV parameter, we use 10 knots (Figure [I)) since based on the
author’s experience, regression relationships in the western US region tend to hold for
regions of a few square degrees. For simplicity, the same knot locations were used for
each GEV parameter and the copula but this is not required.

2.3 Missing Data

Stations with missing data can be easily incorporated in the model. When the GEV like-
lihood is computed, years with missing data are simply skipped. With at least 30 years
of data at each station, the GEV parameters can be estimated adequately based on only
the available data. For simplicity, the copula was fit to only stations with complete data,
though missing data could be incorporated by varying the size of the covariance matrix
for each year.

2.4 Likelihood and priors

The marginal distribution of Y (s;) is GEV (u(s;), o(si), £(si)) where the log-likelihood for
some data point y is:

log GEV (11,0, ) = — log(a) — (1+1/¢) log(b) — b/¢ 13)



whereb=1+¢{(y — pn)/o.

Let v represent any of the GEV parameters (i, 0,£). The residual Gaussian processes
likelihood p(w |6, ) is obtained from the multivariate normal density function w,|6, ~
MVN(0, X,), where ¥, = C(6-). We use an exponential covariance function with pa-
rameters 63 (the partial sill or marginal variance), a, (the range) and 7,3 (the nugget), so
0, = ((53, Qry, 73) The parametric form of the covariance function is

0% exp(—|lsi — sjll/ay) i
C(S’iasj;o’Y): {(5; 2 ’ ! .
5+ Ty 1=

We use weakly informative normal priors centered at 0, with a standard deviations as fol-
lows: 0.1 (62, Tg ), 1 (53, 52, 7'3, 72, g, e, cf;i =1,...,n),10(8},33),1000 (ay, as, ag, ag, a;;i =
1,...,n). For £ we restrict values to the range [—0.5, 0.5], motivated by the typical ranges

seen in precipitation data [Cooley and Sain, 2010].

2.5 Composite likelihood

When using Gaussian processes for large datasets, inversion (or Cholesky decomposition)
of the covariance matrix is the main computational bottleneck. We use a composite like-
lihood approach to approximate the true likelihood [Lindsay, 1988]. In our approach, the
data is broken up into G groups each with n, stations. The composite likelihood estimate
of the true likelihood is a product of the likelihood in each group.

Lg = [[N(0,54(6)) (14)

Approximating the likelihood in this way requires O(Gn;) computations as opposed to
O(n?). This approximation is applied to the copula as well as each of the GEV parameter
residuals.

What remains in the model are a few application specific details: selection of the knot
locations and the selection of covariates. These are described in the next sections.

TODO Selection of group size and group distribution



3 Application to the Western US

3.1 Precipitation Data

Daily precipitation data is obtained from the Global Historical Climatology Network
(GHCN). We use all available stations in the western US which contain more than 30
years of data from 1950-2013. 3-day maxima were computed fall (SON). For a season to
be included for a particular year, we require no more than 25% of the days be missing. The
number of stations included (with the number of complete stations in parentheses) was
2618 (848). Figure[I|shows the station locations, with solid black points indicating stations
with complete data and filled grey points indicating stations with incomplete data. Red
asterisks indicate the centers (knots) for the radial basis functions.

3.2 Covariates

For all GEV parameters the same covariates are used, i.e., x,(s) = x,(s) = x¢(s) = x(s).
The covariates are elevation and mean seasonal precipitation. Typically, latitude and lon-
gitude are used as well but the spatially variation of the regression coefficients precludes
this. Covariates were obtained at knot locations, station locations and at a 1/8th degree
grid throughout the study area. Elevation data was obtained from the NASA Land Data
Assimilation Systems (NLDAS) website [Xia et al.,2012a| b]. Mean seasonal precipitation
was computed from the Maurer dataset [Maurer et al.,2002].

3.3 Implementation

The model was implemented in the Stan modeling language [Stan Development leam,
2015b]] using the RStan interface [Stan Development Team| 2015a]. Stan uses the No-U-
Turn Sampler (NUTS), an implementation of Hamiltonian Monte Carlo (HMC) [Betan-
court, 2013; [Hoffman and Gelman, 2014]. The NUTS sampler deals well with highly cor-
related parameters, tends to need very few warmup iterations and typically produces
nearly uncorrelated samples. For these reasons, very long chains are usually not needed,
nor is thinning. The tradeoff in using the NUTS sampler in this application was much
longer computation time per sample compared to a traditional Metropolis-Hastings or
Gibbs sampler.

Three chains of length 3,000 were run, with the first 1000 iterations discarded as warmup,
resulting in 6,000 samples for each parameter in each season. To assess convergence,

'http:/ /1das.gsfc.nasa.gov /nldas/NLDASelevation.php
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Figure 1: Station locations with complete data (black solid dots) and station locations

with incomplete data (grey filled dots). Red asterisks are knot locations for the spatially
varying regression coefficients.



we compute the R statistic to ensure it is below 1.1, as well as visually inspect trace
plots.

3.4 Computation of gridded return levels

After computing p = [i|,, 0 = [0;]l, and € = [§]_; we can obtain distributions of
each GEV parameters at each 1/8th degree grid cell via conditional simulation. Parameter
values at the knots are kriged to grid locations and gridded parameter values are used to
compute return levels at each grid cell using the GEV return level formula

2(r) = i + oy((—log(1 — 1/7)) "% — 1)/&;,

where 7 is the return period in years (100 years for example).

4 Results

Figure [2| shows the median return level and the associated width of the 90% credible
interval at each grid cell. Note the logarithmic color scales. The largest credible intervals
are present in coastal mountain ranges due to the strong positive correlation between p
and o.

Figure 3|shows the median of the GEV parameters after interpolation by conditional sim-
ulation. The location and shape fields are highly correlated; locations with higher average
extreme precipitation tend to have more variability in these extremes. Values of £ are al-
ways positive, indicating a heavy upper tail. The southern coastal region in California in
the summer indicates a very heavy upper tail. Figure shows the ratio of the median return
level to the width of the 90% CI indicating the largest relative uncertainties actually occur
mostly in southern California, where the GEV tail is the fattest.

5 Discussion and conclusions

We describe a general hierarchical model for extreme data observed over space and time.
The data is assumed to have generalized extreme value (GEV) marginal distributions
which are conditionally independent given the at-site GEV parameters. Spatial depen-
dence is captured by Gaussian processes on the three GEV parameters (location, scale
and shape). Using a composite likelihood approach, we are able to efficiently incorporate
a large number of observation locations. The model was applied to extreme 3-day pre-
cipitation in fall in the western United States, a climatically and geographically diverse
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credible interval (right). Note the logarithmic color scale.
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region. A simple spatial model was applied to the spatial regression coefficients allowing
the model to be applied to arbitrarily large regions. The model was fit using a standard
Bayesian methodology, implicitly capturing uncertainty in the parameter estimates and
spatial predictions.

A crux of this model is the use of appropriate spatial covariates. Mean seasonal precipita-
tion (MSP) had a correlation of 95% with the MLE estimates of ;1 and 75% with the MLE
estimates of 0. This covariate went a long way in generating realistic spatial variability,
leaving small residuals. The covariates also help to reveal a complex spatial pattern for
the shape parameter, £. The strongest covariate for £ was elevation. The seasonally de-
pendent spatial variability in & shows that it is inappropriate to model without spatial
variation for anything but the smallest regions.

A number of extensions can be made to this framework. The most obvious extension is to
allow temporal variation in the GEV parameters by including temporal covariates. While
this extension remains infeasible for the size of the current study region, it may be feasible
for smaller regions, say a single state. Additional spatial covariates could be included; for
example, seasonal temperature, winds or evapo-transpiration. A model such as the one
presented here can be used to investigate changes in risk under specific climate regimes
(i.e. ENSO); one would simply include the mean seasonal precipitation field from strong
El Nifio or La Nifa years. Because we incorporate a data layer, this model could be used
to simulate realistic fields of extremes under specific climate regimes. Finally, we plan to
explore the linking of streamflow data into the hierarchy, so that streamflow extremes can
be simultaneously estimated.

6 Acknowledgments

Funding for this research by a Science and Technology grant from Bureau of Reclamation
is gratefully acknowledged. This work utilized the Janus supercomputer, which is sup-
ported by the National Science Foundation (award number CNS-0821794) and the Uni-
versity of Colorado Boulder. The Janus supercomputer is a joint effort of the University
of Colorado Boulder, the University of Colorado Denver and the National Center for At-
mospheric Research. The authors are thankful for support from the Janus supercomputer
staff at the University of Colorado.

Pre- and postprocesseing analysis was conducted using the R language [R Core Team,
2014].

Datais availableat: http://bechtel.colorado.edu/~bracken/spatial_extremes/.

12


http://bechtel.colorado.edu/~bracken/spatial_extremes/

References

Apputhurai, P, and A. G. Stephenson, Spatiotemporal hierarchical modelling of extreme
precipitation in Western Australia using anisotropic Gaussian random fields, Environ-
mental and Ecological Statistics, 20(4), 667-677, 2013.

Aryal, S. K., B. C. Bates, E. P. Campbell, Y. Li, M. J. Palmer, and N. R. Viney, Character-
izing and Modeling Temporal and Spatial Trends in Rainfall Extremes, dx.doi.org, 10(1),
241-253, 2010.

Atyeo, ]., and D. Walshaw, A region-based hierarchical model for extreme rainfall over
the UK, incorporating spatial dependence and temporal trend, Environmetrics, 23(6),
509-521, 2012.

Banerjee, S., A. E. Gelfand, A. O. Finley, and H. Sang, Gaussian predictive process models
for large spatial data sets, Journal of the Royal Statistical Society, 2008.

Betancourt, M. J., Generalizing the No-U-Turn Sampler to Riemannian Manifolds, arXiv,
1304(1920), 2013.

Caragea, P. C., and R. L. Smith, Asymptotic properties of computationally efficient al-
ternative estimators for a class of multivariate normal models, Journal of Multivariate
Analysis, 98(7), 1417-1440, 2007.

Cooley, D., and S. R. Sain, Spatial Hierarchical Modeling of Precipitation Extremes From
a Regional Climate Model, Journal of Agricultural, Biological, and Environmental Statistics,
15(3), 381402, 2010.

Cooley, D., P. Naveau, and P. Poncet, Variograms for spatial max-stable random fields,
Dependence in probability and statistics, 2006.

Cooley, D., D. Nychka, and P. Naveau, Bayesian spatial modeling of extreme precipitation
return levels, Journal of the American Statistical Association, 2007 .

Davison, A. C., S. A. Padoan, and M. Ribatet, Statistical Modeling of Spatial Extremes,
Statistical Science, 27(2), 161-186, 2012.

Dyrrdal, A. V., A. Lenkoski, T. L. Thorarinsdottir, and F. Stordal, Bayesian hierarchical
modeling of extreme hourly precipitation in Norway, Environmetrics, pp.n/a—n/a, 2014.

Ghosh, S., and B. K. Mallick, A hierarchical Bayesian spatio-temporal model for extreme
precipitation events, Environmetrics, 22(2), 192-204, 2011.

Hoffman, M. D., and A. Gelman, The No-U-Turn Sampler: Adaptively Setting Path
Lengths in Hamiltonian Monte Carlo, Journal of Machine Learning Research, 15(Apr),
1593-1623, 2014.

13



Johnson, M. E., L. M. Moore, and D. Ylvisaker, Minimax and maximin distance designs,
Journal of Statistical Planning and Inference, 26(2), 131-148, 1990.

Lindsay, B. G., Composite Likelihood Methods, Comtemporary Mathematics, 80, 221-239,
1988.

Maurer, E. P, A. W. Wood, J. C. Adam, D. P. Lettenmaier, and B. Nijssen, A Long-Term
Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous
United States, Journal of Climate, 15(22)(22), 3237-3251, 2002.

Nychka, D., and N. Saltzman, Design of Air-Quality Monitoring Networks, in Case Studies
in Environmental Statistics, pp. 51-76, Springer US, New York, NY, 1998.

Padoan, S. A., M. Ribatet, and S. A. Sisson, Likelihood-Based Inference for Max-Stable
Processes, dx.doi.org, 105(489), 263-277, 2010.

R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for
Statistical Computing, Vienna, Austria, 2014.

Reich, B. J., and B. Shaby, A hierarchical max-stable spatial model for extreme precipita-
tion, The annals of applied statistics, 6(4), 1430-1451, 2012.

Renard, B., A Bayesian hierarchical approach to regional frequency analysis, Water Re-
sources Research, 2011.

Renard, B., and M. Lang, Use of a Gaussian copula for multivariate extreme value analy-
sis: Some case studies in hydrology, Advances in Water Resources, 30(4), 897-912, 2007.

Sang, H., and A. E. Gelfand, Hierarchical modeling for extreme values observed over
space and time, Environmental and Ecological Statistics, 16(3), 407-426, 2009.

Sang, H., and A. E. Gelfand, Continuous Spatial Process Models for Spatial Extreme Val-
ues, Journal of Agricultural, Biological, and Environmental Statistics, 15(1), 49-65, 2010.

Schlather, M., Models for Stationary Max-Stable Random Fields, Extremes, 5(1), 33—44,
2002.

Shang, H., J. Yan, and X. Zhang, El Nifio-Southern Oscillation influence on winter max-
imum daily precipitation in California in a spatial model, Water Resources Research,
47(11),n/a-n/a, 2011.

Smith, R. L., Max-stable processes and spatial extremes, Unpublished manuscript, 1990.
Stan Development Team, RStan: the R interface to Stan, Version 2.7.0, 2015a.

Stan Development Team, Stan: A C++ Library for Probability and Sampling, Version 2.7.0
, 2015b.

14



Xia, Y., et al., Continental-scale water and energy flux analysis and validation for North
American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of
model-simulated streamflow, . Geophys. Res., 117(D3), D03,110, 2012a.

Xia, Y., et al., Continental-scale water and energy flux analysis and validation for the
North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. In-
tercomparison and application of model products, J. Geophys. Res., 117(D3), D03,109,
2012b.

15



	Introduction
	Model structure
	Elliptical copula for data dependence
	Spatial regression model
	Missing Data
	Likelihood and priors
	Composite likelihood

	Application to the Western US
	Precipitation Data
	Covariates
	Implementation
	Computation of gridded return levels

	Results
	Discussion and conclusions
	Acknowledgments

