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Abstract The spatial development of a passive scalar plume is studied within the
inhomogeneous turbulence of a boundary layer flow in a recirculating laboratory
flume with a smooth bed. The source of the scalar is located flush with the bed,
and the low-momentum source design is intended to simulate a diffusive-type scalar
release. A weakly diffusive fluorescent dye is used as the scalar. Planar laser-induced
fluorescence (PLIF) techniques were used to record the structure of the plume at
a spatial resolution of 150 um. The measured structure of the mean concentration
field is compared to an analytical solution for shear-free, homogeneous turbulence.
The laboratory plume exhibits spatial development in the mean concentration field
that deviates from the self-similar behavior predicted by the analytical solution; this
deviation is due to the mean shear and inhomogeneity of the turbulence. In partic-
ular, the influence of the viscous sublayer on the plume development is seen to be
significant. Nonetheless, the analytical solution replicates some of the features seen in
the laboratory plume, and the solution suggests methods of reducing the laboratory
data even for cases where the results deviate from the analysis. We also examine the
spatial development of the root-mean-square (rms) fluctuating concentration field,
and use scalar probability density functions to examine the relationship between the
mean and fluctuating concentrations.
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1 Introduction

The macroscopic dispersion of passive scalars from momentumless sources is gov-
erned exclusively by details of the mean and instantaneous flow structure. Within a
turbulent boundary layer, the process is complicated by the anisotropic and inhomo-
geneous nature of the turbulence. In this study, we examine the spatial development of
a neutrally buoyant passive scalar dye plume introduced with extremely low momen-
tum from a flush source in the smooth bed of a laboratory water flume. The source
configuration was designed to mimic a diffusive-type scalar release from within a
smooth bed; the interaction of such a plume with the viscous sublayer (VSL) region
of the boundary layer is seen to be significant. The plume structure is quantified in
vertical and horizontal planes for two flow cases using a planar laser-induced fluores-
cence (PLIF) technique (1). We compare the results to an idealized analytical plume
solution and to previous studies.

Laboratory flumes have been used previously to measure the plume structure from
an isokinetic ground level release from a horizontal tube over a rough bed (2), from
an isokinetic release in the logarithmic region of a turbulent boundary layer above
smooth (3,4) and rough beds (5). The dispersion of ground level and elevated scalar
releases has also been studied in wind tunnels over a rough bed (6,7). A summary of
the findings from these studies is given in Rahman and Webster (5).

The effect of inhomogeneity in the turbulent boundary layer on plume dispersion
has been investigated analytically (6,8) and numerically (9). Vertical variations in
turbulent mixing result in a non-Gaussian vertical concentration profile, but lateral
concentration profiles remain Gaussian. Several studies (2,6,7) suggest that the non-
Gaussian vertical profiles are nonetheless self-similar in the streamwise direction.
The results of this study indicate a strong streamwise development in the shape of the
vertical profile. We argue that this is a result of a strong influence by the VSL that was
absent in other experimental configurations.

Portions of the dataset presented in the present paper have been published in
an earlier work by Crimaldi etal. (10). The earlier work examined the relationship
between the instantaneous and mean scalar structure for a single flow case. The
present study examines the spatial development of both the mean and fluctuating
concentration fields for two flow cases. The results share some common features seen
in previous studies, but also differ significantly in a number of important respects. In
particular, the streamwise development of vertical profiles of the mean concentration
shows a decrease in kurtosis, asymptoting toward a Gaussian in the far field. Previous
studies (over rough boundaries) show the opposite trend.

2 Ideal plume solution
We begin by reviewing the analytical framework for an idealized scalar plume, ignor-
ing mean shear and inhomogeneous diffusivities in the flow. The resulting solution will

be useful as a baseline for the experimental results presented later. The steady-state
turbulent transport of a passive scalar in a flowfield with mean velocity (u, 0, 0) is given

by
aC 9 aC 9 aC
U—=—\Dy— )+ —-|D:— ), (1)
ox  dy dy 9z 0z
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where C is the local mean concentration, and Dy and D; are effective diffusivities
due to turbulent dispersion in the lateral and vertical directions (streamwise diffusion
is negligible relative to the advective scalar flux). Equation 1 has simple analytical
solutions when neither the velocity field nor the turbulent diffusivities vary spatially.
For an ideal flow in the x-direction over a solid boundary located at z = 0, with a
point scalar source located at (0,0, 0) continuously releasing scalar mass at rate 71, the
solution to Eq. 1 is a plume given by

_ 2m y2 2
C(x7yvz) - exp(_z_z i (2)
dmx,/DyD, 20y 20

where lateral and vertical concentration profiles are Gaussian with standard devia-

tions
oy =,/2Dyx/u (3)
o, = 2D x/u. 4)

Both lateral and vertical mean concentration profiles are self-similar, with plume
dimensions that grow as x'/> and magnitudes that decay as x~!. This ideal plume
solution will be used as a baseline for comparing the development of a plume in a
real turbulent boundary layer (where velocities and coefficients of turbulent disper-
sion vary spatially). This will enable us to investigate the effect of inhomogeneous
turbulence and mean shear on the spatial development of the plume.

and

3 Experimental details

Plume image data were collected in an open-channel recirculating flume (Fig. 1). A
turbulent boundary layer is tripped by a 3 mm diameter rod that spans the flume at
the upstream end of the flume. The boundary layer then develops over a smooth
bed of Plexiglas. The plume source location, designated (x,y,z) = (0,0,0), is on the

z
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Fig. 1 Side view of the flume test section showing the plume source location and coordinate system
(vertical laser scan configuration shown)
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Table 1 Summary of the two experimental flow conditions used in this study

Uso (cm/s) ur (cmy/s) S§(cm) Reg
9.84 0.488 7.2 540
29.9 1.28 7.0 1,800

The values shown were measured at x = 160 cm

centerline of the flume bed, 2.2 m downstream of the trip rod, and the test section
continues 3 m downstream from the source. The source is designed to mimic a diffu-
sive-type (i.e., momentumless) release of a scalar from a flush, bed-level location. A
20 ppm aqueous solution of the fluorescent dye Rhodamine 6G (Schmidt number =
1,250 (11)) is used for the scalar. A gear pump is used to pump the dye solution slowly
through a 1cm diameter circular hole drilled in the floor of the flume. The hole is
filled with a porous foam to provide a uniform flow across the source exit; the foam is
mounted flush with the bed of the flume. The dye solution is pumped at a volumetric
rate of 3 ml/ min, resulting in a vertical exit velocity of 0.063 cm/s. Further details of
the flume design can be found in Crimaldi et al. (10).

Results are presented for two flow cases, with freestream velocities of approxi-
mately Uy = 10 and 30cm/s. A two-dimensional laser-Doppler velocimeter (LDV)
was used to record vertical profiles of the mean velocities and turbulence structure at
x = 160 cm for both flow cases. Pertinent parameters for each flow case are summa-
rized in Table 1. The shear velocities u, were calculated by fitting the mean velocity
profiles to the “law of the wall” (see Fig. 2b). The boundary layer depth § was estimated
as the location where U = 0.99U .

Vertical profiles of the mean streamwise (U) and vertical (W) velocities are shown
dimensionally in Fig. 2a. Non-dimensional streamwise velocities are shown in Fig. 2b,

Us =10 cm/s: ovu v W

w=30cm/s: o U aW

(a) (b)
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Fig. 2 Mean streamwise (U) and vertical (W) velocity profiles for the two flow cases used in this
study. The profiles were measured at x = 160 cm using an LDV. (a) Dimensional profiles of U and W.
(b) Streamwise velocity profiles plotted as U+ versus z*
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Fig. 3 Turbulence intensity and Reynolds stress data (symbols) measured at x = 160cm for (a)
Usx, = 10 cm/s and (b) U, = 30 cm/s . For comparison, DNS results (l/ines) by Spalart at (a)
Rey = 670 and (b) Rey = 1,410 are shown

where the solid lines are the analytical expressions Ut = z" and Ut = (1/«)Inz" +
5.5, where U = U/u, and z+ = zu,/v.

Figure 3 contains measured vertical profiles of normalized turbulence statistics,
with the Uy, = 10 cm/s data shown in Fig. 3a and the Uy, = 30 cm/s data shown
in Fig. 3b. In each case, the data are compared with direct numerical simulation
(DNS) results by Spalart (12) at Reynolds numbers that are similar to the laboratory
conditions. o L

Streamwise and vertical turbulence intensities #? and w2, and the Reynolds stress
correlation zw are normalized by u2, the square of the shear velocity. The statistics are
plotted versus both the non-dimensional wall distance z* as well as the dimensional
distance z. These data are useful for understanding the hydrodynamic context of the
plume results presented later.

Digital images of instantaneous plume concentrations were obtained using a PLIF
technique. Details of the imaging apparatus, image acquisition, and image processing
are given by Crimaldi and Koseff (1) and Crimaldi et al. (10). Images were acquired at
various locations in both horizontal and vertical planes aligned parallel to the flow. At
a given location for a given flow case, 8,000 images were typically acquired at a frame
rate of 3 Hz. The individual images of instantaneous concentration fields were then
ensemble averaged to produce images of statistics such as mean and root-mean-square
(rms) concentrations. Sample images of instantaneous, mean, and rms concentrations
are shown for a horizontal plane in Fig. 4 and a vertical plane in Fig. 5. Both figures
correspond to data acquired in the vicinity of x = 100 cm for the Uy, = 10 cm/s flow
case.
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Fig. 4 Sample PLIF image data in a horizontal plane at z = 2 cm. (a) Typical instantaneous concen-
tration, (b) Mean concentration, and (¢) rms concentration. All values are normalized by the source
concentration, and plotted using the grayscale shown in the legend

4 Results
4.1 Spatial development of the mean concentration field

We begin by examining the spatial development of the mean concentration field, using
image data acquired as described in the previous section. In particular, we compare
the measured spatial development with what is predicted by the ideal plume theory
presented in Sect. 2

4.1.1 Lateral structure

For the ideal plume given by Eq. 2, the lateral structure of the mean concentration field
consists of Gaussian profiles with a maximum concentration on the plume centerline.
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Fig. 5 Sample PLIF image data in a vertical plane at y = Ocm. (a) Typical instantaneous concen-
tration, (b) Mean concentration, and (¢) rms concentration. All values are normalized by the source
concentration, and plotted using the grayscale shown in the legend

These profiles can be expressed in the self-similar form

Cy -y
a = eXp (E) ) (5)

where Cy—g is the mean centerline concentration of a given plume profile, and oy is
a measure of the plume width (Eq. 3). Lateral profiles of mean concentration nor-
malized in this manner are shown in Fig. 6, where a two-parameter least-squares fit
is performed for each profile to obtain values for Ey:() and oy. Data (symbols) from
both flow cases and for various x and z locations are compared with Eq. 5 (solid line).
The mean lateral concentration profiles are Gaussian, consistent with the ideal plume
theory and previous experimental studies (2,7).

The streamwise growth of o, as a function of streamwise location is shown in Figs. 7
and 8 for both flow cases and at several heights above the bed. The dimensional data
are compared to the growth given by the ideal plume solution in Eq. 3.
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Fig. 6 Normalized lateral profiles of mean concentration, with only every tenth data point shown for
clarity. Units in the legend are in terms of cm/s for Uso, and cm for x and z. The solid line underneath
the symbols is the Gaussian given by Eq. 5
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Fig. 7 Lateral plume growth at (a) z = 2cm and (b) z = 4cm as a function of downstream distance
from the source for Uy, = 10 cm/s. The solid lines are fits of Eq. 3 to the data. The dashed line is a
similar fit, but including an x-offset as an additional fit parameter

In Fig. 7, data (symbols) are shown for the Uy, = 10 cm/s flow case at (a) z = 2cm
and (b) z = 4cm above the bed. For each case, a least-squares fit of Eq. 3 (solid line)
is shown, where the fit parameter allows Dy, to be calculated (by assuming # = Uy in
Eq.3). Atz = 2 cm, the data are in excellent agreement with the ideal plume solution.
Farther from the bed, at z = 4 cm, the fit is not quite as good. However, if a new fit
is performed where an x offset is introduced as a second fitting parameter, the agree-
ment is improved. This fit is shown in Fig. 7b as a dotted line. This finding suggests
that the combined effects of shear and vertical variations in mixing rates results in a
downstream shift in the effective origin for the x'/? growth of oy. This effect appears
to be larger at distances farther from the wall.
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Table 2 Lateral diffusivities
Uso Z (cm) Dy (cm?/s) Dy/(Suzr)
10 4 0.54 0.15
10 2 0.46 0.13
10 0.5 0.44 0.13
10 0.2 0.39 0.11
30 2 1.13 0.13
30 0.5 1.13 0.13

Additional o}, versus x data are shown in Fig. 8. For the cases shown in this plot,
we had acquired images over a much shorter range of x values, but fits to estimate
D, were still possible. The resulting Dy, values for all of the cases are summarized in
Table 2. Note that, for simplicity, all tabulated data represents values of D, obtained
without the use of an x-offset fitting parameter.

Also tabulated are values of Dy /(du;), where § is the depth of the momentum
boundary layer in the vicinity of the developing plume. Empirical values of the param-
eter Dy/(d u;), where d is the flow depth, are commonly reported in range from 0.1
to 0.2, with a typical empirical estimate being D, &~ 0.15du. (13). In our laboratory
study, the momentum boundary layer is not fully developed over the depth of the flow,
so the use of the boundary layer depth § is a more consistent parameter than d. The
measured values of D) /(8u.) are in all cases in reasonable agreement with published
empirical estimates. However, the near-bed values are smaller by as much as 25%,
consistent with the idea of lower lateral mixing rates near the bed.

4.1.2 Vertical structure

For the ideal plume solution, the vertical structure of the mean concentration field
also consists of Gaussian profiles, with a maximum concentration at the bed. Using
Eq. 2, vertical concentration profiles along the ideal plume centerline (y = 0) can be
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Fig. 9 Vertical profiles of mean concentration at downstream locations for both flow cases, plotted
in the non-dimensional form given by Eq. 7. The line is the ideal plume solution given by Eq. 6
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Fig.10 Vertical profiles of mean concentration at various streamwise locations for the Uy, = 10 cm/s
flow case, plotted in the same non-dimensional form as Fig. 9 (note that the vertical locations are also
given in terms of z units on the right-hand axis). The dashed lines are least-squares fits of the three
profiles to Eq. 8, with resulting « vales as shown

written in the self-similar form
T =exp(-27), (6)

where

Cc' = 2nyDyD: ‘{)“@xc andz* = [+ (7
h 4D, /x
Measured vertical concentration profiles far from the source are quite consistent with
Eq. 6. Figure 9 shows downstream vertical profiles from each of the two flow cases.
Each of the profiles is normalized via a least-squares fit to Eq. 6. The fit yields values
for the parameters 2 ,/Dy D /i1 and \/u /4D in Eq. 7. Since neither of these param-
eters are expected to vary significantly in the x direction, the same values are then
used later to non-dimensionalize the remaining vertical profiles closer to the source.
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Fig. 11 Values of « obtained via least-squares fits of vertical concentration profiles to Eq. 8 for

both flow cases. The distances from the source are normalized by the viscous length scale such that
+

xT =Xxur/v

Near the bed, the measured concentrations exceed the ideal predictions. This effect
is greater for the slower flow case, and becomes more pronounced for both flow cases
closer to the source. The distance from the source is normalized by the viscous length
scale, giving x™ = xu, /v.

Figure 10 shows the streamwise development of the vertical concentration profiles
for the Uy, = 10 cm/s flow case. All three profiles are normalized by the same values
used for the x = 140 cm data in Fig. 9. Close to the source, the near-bed concentration
values greatly exceed the ideal prediction (see the solid line from Fig. 9), consis-
tent with observed “trapping” of dye within the low-mixing region of the VSL (10),
and with corresponding lower concentrations far from the bed. The right-hand axis on
Fig. 10 gives distance from the bed in terms of z™ units. Note that the deviations above
the theory grow large for z* < 30, which corresponds to the viscous wall region, and
the deviations are largest in the VSL (zT <5). Scalars in the region below z+ ~ 10
are limited in their vertical motion due to the fact that the vertical turbulence inten-
sities remain close to zero up to this distance from the bed (see Fig. 3). As distance
from the source increases, the “trapped” dye eventually migrates into the overlaying
flow where turbulent dispersion produces a vertical profile that approaches the ideal
solution. A least-squares curve fit of the form

C' = Aexp (—2*) 8)

is also shown for each of the profiles. For the three profiles shown, the values found for
the exponent « are 0.38, 0.95, and 1.7. The shape of the profiles asymptotes toward a
Gaussian (o = 2) as x increases. This trend is shown for both flow cases in Fig. 11. The
data from the two flow cases compare well if the streamwise distance is normalized
by the viscous length scale as x*.

Because of the non-Gaussian nature of the vertical concentration profiles (at least
near the source), the vertical spreading of the mean concentration field cannot be
properly characterized in terms of the Gaussian standard deviation given by Eq. 4.
We therefore define the height of the mean plume (8p2) as the vertical location where
the mean concentration drops to 2% of the local bed concentration (the finite spatial
resolution of the camera combined with laser reflections very close to the bed forced
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Fig. 12 Vertical plume height §p, as a function of downstream distance from the plume origin for
Usxo = 10 ecm/s and U = 30 cm/s. The solid line is a least-squares fit of §pp = A 1075 to the
Uso = 10 cm/s data, and the dotted line is Eq. 9

us to use the measured concentration at z = 1 mm as the bed concentration). Figure 12
shows streamwise growth of §p for both the Uy, = 10 cm/s and Uy, = 30 cm/s flow
cases.

From Eq. 2, the predicted growth of §p; for the homogeneous turbulence plume

can be calculated as
4D, 1n0.02
802 =/ it e Ve )
u

This prediction is shown as a dotted line in Fig. 12, where the value of the leading
coefficient has been determined using a least-squares fit to the U, = 10 cm/s data. It
is clear that the vertical dimension of the real plume does not grow as x'/2. The solid
line has the form 8p» = A x%73, consistent with the vertical growth seen by Fackrell and
Robins (7) and others. Also shown in the figure are results from the Uy = 30 cm/s
flow case; the dpp values from these data behave similarly to the Uy, = 10 cm/s
data.

4.1.3 Streamwise behavior

Using Eq. 2, the streamwise mean concentration distribution along the plume center-
line (y = 0) can be written in the self-similar form

-1

2 !

— exp — —,
47, /D,D, 4Dy fu
where £ = xz~2. Equation 10 demonstrates that the ideal C decays as x~!. Motivated
by this form of the ideal solution, we plot profiles of z2C (normalized by the source
strength Cp) verus the similarity variable & to see how the streamwise development
of a plume within an inhomogeneous turbulent boundary layer compares with the
self-similar profile of the ideal plume theory.

The results, shown in Fig. 13 demonstrate two points. First, the streamwise concen-
tration profiles are not self-similar at different heights. Second, the far-field streamwise

72 C(x,0,2) =

(10)
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Fig. 13 Normalized streamwise evolution of mean concentration at various vertical locations for
Uso = 10cm/s

concentration decay exceeds the x~! rate predicted by Eq. 10. As seen in the figure,
the decay rate approaches x~2 for the near-bed data.

4.2 Spatial development of the fluctuating concentration field

We now continue by examining the spatial development of the fluctuating concentra-
tion field. For convenience, we use ¢’ to denote the rms of the fluctuating component
of the concentration field.

-4 -3 -2 -1 0 1 2 3 4
y/oy

Fig. 14 Normalized lateral profiles of rms concentration fluctuation strength, with only every tenth
data point shown for clarity. Units in the legend are in terms of cm/s for Uy and cm for x and z. The
solid line is a Gaussian of the same form as Eq. 5
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Fig. 15 Normalized lateral profiles of rms concentration fluctuation strength at x = 116 cm for the
Uoco =30 cm/s case at z = 0.5 cm. Units in the legend are in terms of cm. The solid line is the Gaussian
C/Cy—q = exp(=y*/207)

4.2.1 Lateral behavior

Lateral profiles of ¢’ at several streamwise and vertical locations for both flow cases
are shown in Fig. 14.

The values for ¢’y—¢ and o, were obtained by fitting ¢’ /¢’,—o to an equation with the
same form as Eq. 5, which is shown in the figure as a solid line. The lateral profiles of
¢’ shown in the figure are Gaussian. However, the lateral ¢’ profile from one experi-
mental condition is not included in Fig. 14, since the behavior was quite different. This
¢ profile, located far from the source (x = 116 cm) and close to the bed (z = 0.5 cm)
for the Us, = 30 cm/s flow case is shown in Fig. 15 (where Eq. 5 is again included for
reference).

For this condition, off-axis bipolar maxima are seen in the ¢’ profile, consistent
with what has been reported in several previous studies of similar (but not identi-
cal) flows (2,7). The off-axis maxima persist over the entire streamwise range of the
image data for this dataset (88 cm < x < 118 cm), and the bipolar nature of the pro-
files grows stronger towards the downstream edge. A meandering plume model (2)
suggests that off-axis maxima occur when the plume spreading is dominated by small-
scale turbulent mixing rather than by mixing due to larger-scale meandering. Since
the meandering scale becomes small relative to the plume width far from the source,
this model predicts that off-axis maxima will occur at sufficiently large downstream
distances. This distance should be reached first when turbulence levels are high (e.g.,
at higher velocities and close to the bed). Thus, the appearance of off-axis maxima
only at z = 0.5 cm for Uy, = 30 cm/s is consistent with this model.

We now quantify the ratio of the width of the concentration variance profiles rel-
ative to the width of the C profiles, whose growth was quantified earlier. Note that
the width of the concentration variance plume is equal to the width of the ¢’ plume
divided by +/2. The streamwise development of this width ratio is shown in Fig. 16
where, for simplicity, we consider only the Gaussian profiles from Fig. 14.

The ratios are near unity, with no apparent streamwise dependence. Thus, the
lateral growth of the variance plume mimics that of the mean plume. As seen in the
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Fig. 16 Ratio of the width of the concentration variance plume to the width of the mean concentra-
tion plume (where the variance plume width is equal to the rms plume width divided by +/2). In the
legend, z is the distance from the bed in cm, and Uy is the freestream velocity in cm/s

figure, the ratio of variance width to mean concentration width generally decreases
slightly as distance from the bed increases or as the velocity increases.

4.2.2 Vertical behavior

Vertical profiles of ¢’ for the Us, = 10 cm/s flow case are shown in Fig. 17.

The two upstream profiles (x = 32 and 42 cm, Fig. 17a) have their maxima close
to the bed level with a near-exponential decay above that. Further downstream (at
x = 102 and 112cm, Fig. 17b), the ¢’ maxima is much farther above the bed. An
analogous pair of plots at the same locations for the Uy, = 30 cm/s flow case is shown
in Fig. 18. In the upstream location (Fig. 18a), the ¢’ peak is smaller and markedly
farther from the bed as compared to the Uy, = 10 cm/s flow case, due to increased
scalar mixing and dissipation at the higher flowrates. Farther downstream (Fig. 18b),
the magnitude and location of the ¢’ peak are quite similar to the those for the slower
flow.

For both flow cases, the ¢’ peak is always above the bed, despite the fact that the C
peak is always at the bed (compare with Fig. 10). Thus, the near-bed plume structure
consists of high-mean concentrations (enhanced by scalar “trapping” in the VSL) with
low-concentration fluctuations (due to rapid mixing by the high shear in the VSL, and
high-turbulence intensities above the VSL).

4.3 Scalar probability density functions

Scalar probability density functions (pdf’s) are useful for examining the relationship
between the mean concentration and the range of instantaneous concentrations that
contribute to the mean. We calculated pdf’s of scalar concentrations normalized by
the local mean concentration C/C, where C is the total (mean plus fluctuating) local
instantaneous concentration and C is the local mean. This approach quantifies the
contributions of instantaneous concentrations above and below the local mean.

Figure 19 shows scalar pdf’s at four distances from the bed at a downstream location
(x = 108 cm) for the Uy, = 10 cm/s flow case.
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The legend lists the dimensional distances from the bed, as well as the correspond-
ing distances in viscous wall units. The vertical dotted line indicates C/C = 1, where
instantaneous concentrations equal the mean. Far from the bed (e.g., z = 40 mm),
there exist a wide range of concentrations relative to the mean, with the most common
concentration being zero (or extremely close to zero), and a monotonically decreasing
occurance of higher concentrations. This is indicative of a highly filamentous scalar
field that has been stirred but not well mixed. Close to the bed (e.g., z = 1 mm, which
is at the edge of the VSL), the range of existing concentrations is much narrower,
with the most likely concentration being C. This is indicative of a scalar field that has
been mixed by the high shear of the VSL, and persists spatially due to low-turbulence
intensities. The intermediate curves in the figure show a smooth progression from the
near-bed pdf to the freestream behavior.

Figure 20 shows a similar set of pdf’s at the same distance from the source, but for
three distances from the plume centerline, at a height of z = 5 mm.

The centerline curve (y = 0) is the z = 5 mm curve from Fig. 19; it has a local max-
imum near C/C = 1. The effect of moving away from the plume centerline (y = 2 cm,
y = 4cm) is similar to the effect of moving away from the bed. Away from the
centerline, the most likely concentration is near zero, with a monotonic decay in the
pdf. Thus, the “trapped” scalar in the VSL is a feature of the near-centerline plume.
The scalar enters the VSL primarily at the plume source. Downstream from there,
scalars have difficulty exiting (or entering) the VSL due to the low turbulence levels.

Figure 21 shows two near-bed (z = 1 mm) pdf’s from an upstream (x = 37 cm) and
a downstream (x = 108 cm) location.

The downstream pdf was also shown in Fig. 19. This figure demonstrates that a cer-
tain streamwise distance is required before the pdf develops a maximum at C/C = 1.
Close to the source, the pdf has a monotonic decay, despite the proximity to the bed.
It takes time (and hence distance) for the high shear near the bed to smear out the
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Fig. 17 Vertical profiles (at y = 0) of rms concentration fluctuations at two (a) upstream and (b)
downstream streamwsie locations for the U, = 10 cm/s flow case
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Fig. 18 Vertical profiles (at y = 0) of rms concentration fluctuations at two (a) upstream and (b)
downstream streamwsie locations for the U, = 30 cm/s flow case. Same scales as Fig. 17
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Fig. 19 The pdf’s of concentration as a function of height (see legend) at y = 0 cm at the downstream
location (x = 108 cm) for the Uso = 10 cm/s flow case

concentration fluctuations seen close to the source. The effect is eventually to limit
the range of existing concentration values.

5 Discussion and summary

The spatial development of the plume in this study is significantly affected by the
interaction of the scalar field with the VSL. This is due to several aspects of the
experimental flow. First, the bed is smooth, which permits the formation of the VSL.
Second, the Reynolds number of the boundary layer flows is quite low (Rey = 540 for
the slow case), which results in a thick VSL (approximately 1 mm) relative to the res-
olution of the PLIF technique (150 m). Finally, the source is flush with the bed, and
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Fig. 20 The pdf’s of concentration as a function of distance from the plume centerline (see legend)
at z = Smm at the downstream location (x = 108 cm) for the Us, = 10 cm/s flow case
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Fig. 21 The pdf’s of concentration as a function of distance from the source at z = 1 mm on the
plume centerline for the Uss = 10 cm/s flow case

the scalar release is essentially momentumless. The result is that the scalar is infused
directly into the VSL, where it has a propensity to persist due to the minimal near-bed
stirring. The ability of the scalar to exit the VSL is controlled by a combination of
molecular diffusion and turbulent incursions into the layer from above. In previous
plume studies, the effect of the VSL was minimized through some combination of bed
roughness, Reynolds number, and size, location, and momentum of the source.

We use an idealized analytical plume solutions as a baseline for many comparisons
with experimental data. The idealized solution assumes that the flow is shear-free and
homogeneous. Because these assumptions are most strongly violated near the bed
(and, in particular, in the VSL), it is not surprising that the near-bed behavior of the
measured plume deviates most significantly from the idealized solution. The observed
deviations are therefore signatures of the shear an inhomogeneity in the flow. The
effect of the low mixing rates in the VSLis to “trap” scalar mass that has been released
there, and the effect of the shear is to rapidly smear out any scalar fluctuations that are
present. These two effects, seemingly at odds with one another, result in the complex
observed mean, and fluctuating concentration profiles.
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Despite the unique configuration of this study, many of the plume characteristics
are in agreement with those reported in previous studies. For example, the lateral
mean concentration profiles are Gaussian, with a variance that grows linearly with
x, consistent with studies such as (2,5-7). The lateral diffusivities deduced from the
measured plume spread are consistent with previously reported values (13). The
lateral concentration fluctuation profiles are seen to be either Gaussian or bimodal,
consistent with the results and discussion given by Rahman and webster (5).

Not surprisingly, the effect of the VSL manifests itself most significantly in the verti-
cal concentration profiles. While the existence of non-Gaussian profiles is well known
(2,5-8), the behavior seen in our study differs. Most studies have reported exponential
vertical mean profiles. Some studies report constant values of the exponent « (e.g., 1.4
(2), 1.5 (7)), while others suggest that o decreases slowly with x (8,9,14). Our results
show a different behavior, with a small @ (corresponding to a strongly non-Gaussian
profile) near the source, asymptoting toward & = 2 (Gaussian) in the far-field. The
small value of « near the source corresponds to a profile with exceptionally high con-
centrations in the VSL, and very low concentrations above it. This profile is a result of
the combined effects of high shear and low mixing in the VSL. As distance from the
source increases, the scalar is able to enter the flow above the VSL, and the profile
tends toward a Gaussian. Our data suggests that « is a function of x™. This scaling is
consistent with the fact that the viscous unit u, /v is a measure of the thickness of the
VSL, and thus x is a measure of the downstream distance relative to the height of
the VSL.

The measurements and analysis presented in this paper are likely somewhat unique
to flows where a VSL is present. As discussed, prior results (where a VSL was not
present) are not in agreement with many results presented herein. Flows with signifi-
cant roughness, large Reynolds numbers, and source geometries that do not initially
confine the scalar to the near-bed region are likely to differ from our results.
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